Ying-Cheng Lai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2741385/ying-cheng-lai-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 366
 12,712
 55
 97

 papers
 citations
 h-index
 g-index

 386
 14,517
 4.2
 6.86

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
366	Metamorphoses and explosively remote synchronization in dynamical networks <i>Chaos</i> , 2022 , 32, 0431	19.3	
365	Stochastically Adaptive Control and Synchronization: From Globally One-Sided Lipschitzian to Only Locally Lipschitzian Systems. <i>SIAM Journal on Applied Dynamical Systems</i> , 2022 , 21, 932-959	2.8	1
364	Continuity Scaling: A Rigorous Framework for Detecting and Quantifying Causality Accurately. <i>Research</i> , 2022 , 2022, 1-10	7.8	2
363	Controlled generation of self-sustained oscillations in complex artificial neural networks. <i>Chaos</i> , 2021 , 31, 113127	3.3	
362	Synchronization within synchronization: transients and intermittency in ecological networks. <i>National Science Review</i> , 2021 , 8, nwaa269	10.8	2
361	Klein scattering of spin-1 Dirac-Weyl wave and localized surface plasmon. <i>Physical Review Research</i> , 2021 , 3,	3.9	1
3 60	State dependence: Does a prior injury predict a future injury?. <i>Physical Therapy in Sport</i> , 2021 , 49, 8-14	3	4
359	Adaptable Hamiltonian neural networks. <i>Physical Review Research</i> , 2021 , 3,	3.9	2
358	Machine learning-based approach to GPS antijamming. GPS Solutions, 2021, 25, 1	4.4	1
357	Anticipating synchronization with machine learning. Physical Review Research, 2021, 3,	3.9	4
356	Emergence of transient chaos and intermittency in machine learning. <i>Journal of Physics Complexity</i> , 2021 , 2, 035014	1.8	4
355	Predicting amplitude death with machine learning. <i>Physical Review E</i> , 2021 , 104, 014205	2.4	4
354	Optimal networks for dynamical spreading. <i>Physical Review E</i> , 2021 , 103, 012302	2.4	6
353	Management implications of long transients in ecological systems. <i>Nature Ecology and Evolution</i> , 2021 , 5, 285-294	12.3	7
352	Optimal inference of the start of COVID-19. <i>Physical Review Research</i> , 2021 , 3,	3.9	4
351	Anomalous role of information diffusion in epidemic spreading. Physical Review Research, 2021, 3,	3.9	6
350	Relativistic quantum chaos in graphene. <i>Physics Today</i> , 2021 , 74, 44-49	0.9	1

(2020-2021)

349	Effects of stochasticity on the length and behaviour of ecological transients. <i>Journal of the Royal Society Interface</i> , 2021 , 18, 20210257	4.1	1
348	Finding nonlinear system equations and complex network structures from data: A sparse optimization approach. <i>Chaos</i> , 2021 , 31, 082101	3.3	3
347	Synchronous Transition in Complex Object Control. <i>Physical Review Applied</i> , 2021 , 16,	4.3	2
346	Machine learning prediction of critical transition and system collapse. <i>Physical Review Research</i> , 2021 , 3,	3.9	17
345	Dynamical network analysis reveals key microRNAs in progressive stages of lung cancer. <i>PLoS Computational Biology</i> , 2020 , 16, e1007793	5	1
344	Partial cross mapping eliminates indirect causal influences. <i>Nature Communications</i> , 2020 , 11, 2632	17.4	16
343	Non-Markovian recovery makes complex networks more resilient against large-scale failures. <i>Nature Communications</i> , 2020 , 11, 2490	17.4	8
342	Impact of inter-layer hopping on epidemic spreading in a multilayer network. <i>Communications in Nonlinear Science and Numerical Simulation</i> , 2020 , 90, 105403	3.7	6
341	Data Based Reconstruction of Duplex Networks. <i>SIAM Journal on Applied Dynamical Systems</i> , 2020 , 19, 124-150	2.8	17
340	Instantaneous success and influence promotion in cyberspace Ihow do they occur?. <i>Physica A: Statistical Mechanics and Its Applications</i> , 2020 , 556, 124725	3.3	
339	Perspectives on relativistic quantum chaos. <i>Communications in Theoretical Physics</i> , 2020 , 72, 047601	2.4	3
338	Noise-enabled species recovery in the aftermath of a tipping point. <i>Physical Review E</i> , 2020 , 101, 01220	62.4	6
337	Spin Fano Resonances and Control in Two-Dimensional Mesoscopic Transport. <i>Physical Review Applied</i> , 2020 , 13,	4.3	2
336	Kac's isospectrality question revisited in neutrino billiards. <i>Physical Review E</i> , 2020 , 101, 032215	2.4	3
335	Long-term prediction of chaotic systems with machine learning. <i>Physical Review Research</i> , 2020 , 2,	3.9	36
334	Anomalous chiral edge states in spin-1 Dirac quantum dots. <i>Physical Review Research</i> , 2020 , 2,	3.9	9
333	Electrical confinement in a spectrum of two-dimensional Dirac materials with classically integrable, mixed, and chaotic dynamics. <i>Physical Review Research</i> , 2020 , 2,	3.9	4
332	Scattering of Dirac electrons from a skyrmion: Emergence of robust skew scattering. <i>Physical Review Research</i> , 2020 , 2,	3.9	6

331	Scaling law of transient lifetime of chimera states under dimension-augmenting perturbations. <i>Physical Review Research</i> , 2020 , 2,	3.9	3
330	Phase diagrams of interacting spreading dynamics in complex networks. <i>Physical Review Research</i> , 2020 , 2,	3.9	13
329	Hysteresis in anesthesia and recovery: Experimental observation and dynamical mechanism. <i>Physical Review Research</i> , 2020 , 2,	3.9	2
328	Anomalous in-gap edge states in two-dimensional pseudospin-1 Dirac insulators. <i>Physical Review Research</i> , 2020 , 2,	3.9	1
327	Pseudospin modulation in coupled graphene systems. Physical Review Research, 2020, 2,	3.9	3
326	Injury prediction as a non-linear system. <i>Physical Therapy in Sport</i> , 2020 , 41, 43-48	3	14
325	Long living transients: Enfant terrible of ecological theory?: Reply to comments on "Long transients in ecology: Theory and applications". <i>Physics of Life Reviews</i> , 2020 , 32, 55-58	2.1	1
324	Predicting phase and sensing phase coherence in chaotic systems with machine learning. <i>Chaos</i> , 2020 , 30, 083114	3.3	15
323	Tipping point and noise-induced transients in ecological networks. <i>Journal of the Royal Society Interface</i> , 2020 , 17, 20200645	4.1	9
322	Long transients in ecology: Theory and applications. <i>Physics of Life Reviews</i> , 2020 , 32, 1-40	2.1	47
321	Dynamical network analysis reveals key microRNAs in progressive stages of lung cancer 2020 , 16, e100	7793	
320	Dynamical network analysis reveals key microRNAs in progressive stages of lung cancer 2020 , 16, e100	7793	
319	Dynamical network analysis reveals key microRNAs in progressive stages of lung cancer 2020 , 16, e100	7793	
318	Dynamical network analysis reveals key microRNAs in progressive stages of lung cancer 2020 , 16, e100	7793	
317	Self-adaptation of chimera states. <i>Physical Review E</i> , 2019 , 99, 010201	2.4	9
316	Equivalence and its invalidation between non-Markovian and Markovian spreading dynamics on complex networks. <i>Nature Communications</i> , 2019 , 10, 3748	17.4	13
315	Random temporal connections promote network synchronization. <i>Physical Review E</i> , 2019 , 100, 032302	2 2.4	6
314	Manifestations of chaos in relativistic quantum systems - A study based on out-of-time-order correlator. <i>Physics Open</i> , 2019 , 1, 100001	1.6	3

(2019-2019)

313	Irrelevance of linear controllability to nonlinear dynamical networks. <i>Nature Communications</i> , 2019 , 10, 3961	17.4	15
312	Harnessing tipping points in complex ecological networks. <i>Journal of the Royal Society Interface</i> , 2019 , 16, 20190345	4.1	17
311	Optimizing biologically inspired transport networks by control. <i>Physical Review E</i> , 2019 , 100, 032309	2.4	3
310	Remote control of cascading dynamics on complex multilayer networks. <i>New Journal of Physics</i> , 2019 , 21, 045002	2.9	12
309	Atomic collapse in pseudospin-1 systems. <i>Physical Review B</i> , 2019 , 99,	3.3	3
308	Pseudospin-1 wave scattering that defies chaos Q-spoiling and Klein tunneling. <i>Physical Review B</i> , 2019 , 99,	3.3	10
307	Pseudospin-1 Systems as a New Frontier for Research on Relativistic Quantum Chaos. <i>Understanding Complex Systems</i> , 2019 , 119-131	0.4	
306	Reinforcement learning meets minority game: Toward optimal resource allocation. <i>Physical Review E</i> , 2019 , 99, 032302	2.4	4
305	Chaos-based Berry phase detector. <i>Physical Review B</i> , 2019 , 99,	3.3	4
304	Optimizing optimization: accurate detection of hidden interactions in active body systems from noisy data. <i>Nonlinear Dynamics</i> , 2019 , 96, 13-21	5	1
303	A model for meme popularity growth in social networking systems based on biological principle and human interest dynamics. <i>Chaos</i> , 2019 , 29, 023136	3.3	4
302	Interplay of Lorentz-Berry forces in position-momentum spaces for valley-dependent impurity scattering in #3 lattices. <i>Physical Review B</i> , 2019 , 99,	3.3	13
301	Enhancing von Neumann entropy by chaos in spinØrbit entanglement. <i>Chinese Physics B</i> , 2019 , 28, 1005	01.2	3
300	Emergence of an optimal temperature in action-potential propagation through myelinated axons. <i>Physical Review E</i> , 2019 , 100, 032416	2.4	6
299	Quantitative assessment of cerebral connectivity deficiency and cognitive impairment in children with prenatal alcohol exposure. <i>Chaos</i> , 2019 , 29, 041101	3.3	4
298	Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars. <i>Physical Review Research</i> , 2019 , 1,	3.9	7
297	Model-free prediction of spatiotemporal dynamical systems with recurrent neural networks: Role of network spectral radius. <i>Physical Review Research</i> , 2019 , 1,	3.9	41
296	Asymmetry in interdependence makes a multilayer system more robust against cascading failures. <i>Physical Review E</i> , 2019 , 100, 052306	2.4	10

295	Machine learning dynamical phase transitions in complex networks. <i>Physical Review E</i> , 2019 , 100, 05231	2.4	13
294	A network approach to quantifying radiotherapy effect on cancer: Radiosensitive gene group centrality. <i>Journal of Theoretical Biology</i> , 2019 , 462, 528-536	2.3	1
293	Multi-Carrier Differential Chaos Shift Keying System With Subcarriers Allocation for Noise Reduction. <i>IEEE Transactions on Circuits and Systems II: Express Briefs</i> , 2018 , 65, 1733-1737	3.5	12
292	Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks. <i>Physical Review E</i> , 2018 , 97, 022311	2.4	13
291	Effect of network structural perturbations on spiral wave patterns. <i>Nonlinear Dynamics</i> , 2018 , 93, 1671	-15680	8
290	Accurate detection of hierarchical communities in complex networks based on nonlinear dynamical evolution. <i>Chaos</i> , 2018 , 28, 043119	3.3	7
289	The "weak" interdependence of infrastructure systems produces mixed percolation transitions in multilayer networks. <i>Scientific Reports</i> , 2018 , 8, 2111	4.9	35
288	Locating multiple diffusion sources in time varying networks from sparse observations. <i>Scientific Reports</i> , 2018 , 8, 2685	4.9	15
287	Statistical inference approach to structural reconstruction of complex networks from binary time series. <i>Physical Review E</i> , 2018 , 97, 022301	2.4	22
286	Autapses promote synchronization in neuronal networks. <i>Scientific Reports</i> , 2018 , 8, 580	4.9	14
285	Predicting tipping points in mutualistic networks through dimension reduction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E639-E647	11.5	62
284	Relativistic quantum chaos-An emergent interdisciplinary field. <i>Chaos</i> , 2018 , 28, 052101	3.3	20
283	Enhancing optical response of graphene through stochastic resonance. <i>Physical Review B</i> , 2018 , 97,	3.3	3
282	Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics. <i>Physical Review E</i> , 2018 , 97, 032317	2.4	12
281	Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera. <i>Physical Review Letters</i> , 2018 , 120, 124101	7.4	17
280	Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system. <i>Chaos</i> , 2018 , 28, 033601	3.3	5
279	Enhancing network synchronization by phase modulation. <i>Physical Review E</i> , 2018 , 98, 012212	2.4	6
278	Close and ordinary social contacts: How important are they in promoting large-scale contagion?. <i>Physical Review E</i> , 2018 , 98,	2.4	12

(2017-2018)

277	Phase Locking of a Pair of Ferromagnetic Nano-oscillators on a Topological Insulator. <i>Physical Review Applied</i> , 2018 , 10,	4.3	4
276	Evolutionary hypergame dynamics. <i>Physical Review E</i> , 2018 , 98,	2.4	7
275	Effect of chaos on two-dimensional spin transport. <i>Physical Review B</i> , 2018 , 98,	3.3	4
274	Transient phenomena in ecology. <i>Science</i> , 2018 , 361,	33.3	168
273	Decay of semiclassical massless Dirac fermions from integrable and chaotic cavities. <i>Physical Review B</i> , 2018 , 98,	3.3	3
272	Relativistic quantum chaos. <i>Physics Reports</i> , 2018 , 753, 1-128	27.7	24
271	Physical controllability of complex networks. <i>Scientific Reports</i> , 2017 , 7, 40198	4.9	36
270	Dynamics of ferrofluidic flow in the Taylor-Couette system with a small aspect ratio. <i>Scientific Reports</i> , 2017 , 7, 40012	4.9	5
269	Universal data-based method for reconstructing complex networks with binary-state dynamics. <i>Physical Review E</i> , 2017 , 95, 032303	2.4	24
268	Low-voltage shock-mitigated micro-electromechanical systems structure. <i>Applied Physics Letters</i> , 2017 , 110, 201903	3.4	1
267	Quasiperiodicity and suppression of multistability in nonlinear dynamical systems. <i>European Physical Journal: Special Topics</i> , 2017 , 226, 1703-1719	2.3	12
266	Superscattering of a pseudospin-1 wave in a photonic lattice. <i>Physical Review A</i> , 2017 , 95,	2.6	10
265	Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis. <i>Royal Society Open Science</i> , 2017 , 4, 160741	3.3	7
264	Reconstructing complex networks without time series. <i>Physical Review E</i> , 2017 , 96, 022320	2.4	10
263	Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system. <i>Physical Review B</i> , 2017 , 96,	3.3	10
262	Detection of time delays and directional interactions based on time series from complex dynamical systems. <i>Physical Review E</i> , 2017 , 96, 012221	2.4	23
261	Emergence of unusual coexistence states in cyclic game systems. Scientific Reports, 2017, 7, 7465	4.9	33
260	Universal model of individual and population mobility on diverse spatial scales. <i>Nature Communications</i> , 2017 , 8, 1639	17.4	100

259	Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy. <i>Physical Review Letters</i> , 2017 , 119, 198301	7.4	35
258	Partially unstable attractors in networks of forced integrate-and-fire oscillators. <i>Nonlinear Dynamics</i> , 2017 , 89, 887-900	5	4
257	Geometric valley Hall effect and valley filtering through a singular Berry flux. <i>Physical Review B</i> , 2017 , 96,	3.3	11
256	Mechanical topological semimetals with massless quasiparticles and a finite Berry curvature. <i>Physical Review B</i> , 2017 , 95,	3.3	6
255	Explosive spreading on complex networks: The role of synergy. <i>Physical Review E</i> , 2017 , 95, 042320	2.4	25
254	Universal framework for edge controllability of complex networks. Scientific Reports, 2017, 7, 4224	4.9	21
253	Optimal localization of diffusion sources in complex networks. Royal Society Open Science, 2017, 4, 1700	19 .13	18
252	Robustness of persistent currents in two-dimensional Dirac systems with disorder. <i>Physical Review B</i> , 2017 , 96,	3.3	8
251	Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination. <i>ELife</i> , 2017 , 6,	8.9	44
250	Multistability in Nanosystems. Lecture Notes in Networks and Systems, 2017, 53-64	0.5	
249	Multistability, chaos, and random signal generation in semiconductor superlattices. <i>Physical Review E</i> , 2016 , 93, 062204	2.4	13
248	Data-based reconstruction of complex geospatial networks, nodal positioning and detection of hidden nodes. <i>Royal Society Open Science</i> , 2016 , 3, 150577	3.3	20
247	Controlling herding in minority game systems. Scientific Reports, 2016, 6, 20925	4.9	10
246	Directed dynamical influence is more detectable with noise. Scientific Reports, 2016, 6, 24088	4.9	14
245	Energy scaling and reduction in controlling complex networks. Royal Society Open Science, 2016, 3, 1600	0643	37
244	Growth, collapse, and self-organized criticality in complex networks. Scientific Reports, 2016, 6, 24445	4.9	9
243	Reconstructing direct and indirect interactions in networked public goods game. <i>Scientific Reports</i> , 2016 , 6, 30241	4.9	13

(2015-2016)

241	Unified underpinning of human mobility in the real world and cyberspace. <i>New Journal of Physics</i> , 2016 , 18, 053025	2.9	17
240	Enhancement of spin polarization by chaos in graphene quantum dot systems. <i>Physical Review B</i> , 2016 , 93,	3.3	8
239	Nonlinear Dynamics and Chaos in Micro/Nano-Scale Systems and Applications. <i>Additional Conferences (Device Packaging HiTEC HiTEN & CICMT)</i> , 2016 , 2016, 001588-001612	0.1	
238	A geometrical approach to control and controllability of nonlinear dynamical networks. <i>Nature Communications</i> , 2016 , 7, 11323	17.4	73
237	A robust relativistic quantum two-level system with edge-dependent currents and spin polarization. <i>Europhysics Letters</i> , 2016 , 115, 20005	1.6	6
236	Control efficacy of complex networks. <i>Scientific Reports</i> , 2016 , 6, 28037	4.9	7
235	Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards. <i>Physical Review E</i> , 2016 , 94, 062214	2.4	11
234	Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics. <i>Scientific Reports</i> , 2016 , 6, 35381	4.9	15
233	Nonlinear dynamics induced anomalous Hall effect in topological insulators. <i>Scientific Reports</i> , 2016 , 6, 19803	4.9	6
232	Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles. <i>Physical Review B</i> , 2016 , 94,	3.3	18
231	Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems. <i>Scientific Reports</i> , 2015 , 5, 8963	4.9	15
230	Optimization and resilience of complex supply-demand networks. New Journal of Physics, 2015, 17, 063	029	6
229	Reverse Stark effect, anomalous optical transitions, and control of spin in topological insulator quantum dots. <i>Physical Review B</i> , 2015 , 92,	3.3	8
228	Traffic-driven epidemic spreading in correlated networks. <i>Physical Review E</i> , 2015 , 91, 062817	2.4	16
227	Dynamics of social contagions with memory of nonredundant information. <i>Physical Review E</i> , 2015 , 92, 012820	2.4	93
226	Consistency between functional and structural networks of coupled nonlinear oscillators. <i>Physical Review E</i> , 2015 , 92, 012912	2.4	9
225	Conductance fluctuations in chaotic bilayer graphene quantum dots. <i>Physical Review E</i> , 2015 , 92, 01291	82.4	8
224	Conductance stability in chaotic and integrable quantum dots with random impurities. <i>Physical Review E</i> , 2015 , 92, 022901	2.4	2

223	Ring-bursting behavior en route to turbulence in narrow-gap Taylor-Couette flows. <i>Physical Review E</i> , 2015 , 92, 053018	2.4	3
222	Detection meeting control: Unstable steady states in high-dimensional nonlinear dynamical systems. <i>Physical Review E</i> , 2015 , 92, 042902	2.4	2
221	Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system. <i>Scientific Reports</i> , 2015 , 5, 18589	4.9	11
220	Transition to turbulence in Taylor-Couette ferrofluidic flow. <i>Scientific Reports</i> , 2015 , 5, 10781	4.9	12
219	Controlled generation of switching dynamics among metastable states in pulse-coupled oscillator networks. <i>Chaos</i> , 2015 , 25, 103109	3.3	5
218	Emergence of multicluster chimera states. <i>Scientific Reports</i> , 2015 , 5, 12988	4.9	22
217	Universal formalism of Fano resonance. AIP Advances, 2015, 5, 017137	1.5	23
216	Extreme events in multilayer, interdependent complex networks and control. <i>Scientific Reports</i> , 2015 , 5, 17277	4.9	22
215	Spatiotemporal patterns and predictability of cyberattacks. <i>PLoS ONE</i> , 2015 , 10, e0124472	3.7	24
214	Peer pressure: enhancement of cooperation through mutual punishment. <i>Physical Review E</i> , 2015 , 91, 022121	2.4	30
213	Early effect in time-dependent, high-dimensional nonlinear dynamical systems with multiple resonances. <i>Physical Review E</i> , 2015 , 91, 022906	2.4	1
212	Asymmetrically interacting spreading dynamics on complex layered networks. <i>Scientific Reports</i> , 2014 , 4, 5097	4.9	157
211	Controlling extreme events on complex networks. Scientific Reports, 2014, 4, 6121	4.9	24
210	Level spacing statistics for two-dimensional massless Dirac billiards. <i>Chinese Physics B</i> , 2014 , 23, 070507	1.2	7
209	Uncovering hidden nodes in complex networks in the presence of noise. Scientific Reports, 2014, 4, 3944	4.9	30
208	Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. <i>Scientific Reports</i> , 2014 , 4, 7486	4.9	58
207	Effects of behavioral response and vaccination policy on epidemic spreadingan approach based on evolutionary-game dynamics. <i>Scientific Reports</i> , 2014 , 4, 5666	4.9	47
206	Universal flux-fluctuation law in small systems. Scientific Reports, 2014 , 4, 6787	4.9	15

205	Emergence, evolution and scaling of online social networks. <i>PLoS ONE</i> , 2014 , 9, e111013	3.7	1
204	Identifying Chaotic FitzHughNagumo Neurons Using Compressive Sensing. <i>Entropy</i> , 2014 , 16, 3889-390	2 2.8	11
203	Triple grouping and period-three oscillations in minority-game dynamics. <i>Physical Review E</i> , 2014 , 90, 062917	2.4	6
202	Reconstructing propagation networks with natural diversity and identifying hidden sources. <i>Nature Communications</i> , 2014 , 5, 4323	17.4	125
201	Suppression of epidemic spreading in complex networks by local information based behavioral responses. <i>Chaos</i> , 2014 , 24, 043106	3.3	85
200	Controlling complex, non-linear dynamical networks. <i>National Science Review</i> , 2014 , 1, 339-341	10.8	26
199	Quantum manifestation of a synchronization transition in optomechanical systems. <i>Physical Review A</i> , 2014 , 90,	2.6	38
198	Quantum chaotic tunneling in graphene systems with electron-electron interactions. <i>Physical Review B</i> , 2014 , 90,	3.3	11
197	Overarching framework for data-based modelling. <i>Europhysics Letters</i> , 2014 , 105, 30004	1.6	11
196	Regularization of chaos by noise in electrically driven nanowire systems. <i>Physical Review B</i> , 2014 , 89,	3.3	6
195	Scaling and correlation of human movements in cyberspace and physical space. <i>Physical Review E</i> , 2014 , 90, 050802	2.4	23
194	Exact controllability of multiplex networks. New Journal of Physics, 2014, 16, 103036	2.9	46
193	Nonlinear dynamics and quantum entanglement in optomechanical systems. <i>Physical Review Letters</i> , 2014 , 112, 110406	7.4	71
192	Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems. <i>Physical Review B</i> , 2013 , 87,	3.3	9
191	Robustness of chimera states in complex dynamical systems. <i>Scientific Reports</i> , 2013 , 3, 3522	4.9	44
190	Effect of geometrical rotation on conductance fluctuations in graphene quantum dots. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 105802	1.8	5
189	Universality of flux-fluctuation law in complex dynamical systems. <i>Physical Review E</i> , 2013 , 87, 012808	2.4	14
188	Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. <i>Physical Review E</i> , 2013 , 87, 052908	2.4	9

187	Complex dynamics in nanosystems. <i>Physical Review E</i> , 2013 , 87, 052911	2.4	14
186	Harnessing quantum transport by transient chaos. <i>Chaos</i> , 2013 , 23, 013125	3.3	20
185	Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 085502	1.8	2
184	Emergence of scaling in human-interest dynamics. <i>Scientific Reports</i> , 2013 , 3, 3472	4.9	63
183	Engineering of regulated stochastic cell fate determination. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 10610-5	11.5	71
182	Persistent coexistence of cyclically competing species in spatially extended ecosystems. <i>Chaos</i> , 2013 , 23, 023128	3.3	22
181	Anti-phase synchronization in microelectromechanical systems and effect of impulsive perturbations. <i>Physical Review B</i> , 2013 , 87,	3.3	8
180	Chiral scars in chaotic Dirac fermion systems. <i>Physical Review Letters</i> , 2013 , 110, 064102	7.4	32
179	Exact controllability of complex networks. <i>Nature Communications</i> , 2013 , 4, 2447	17.4	323
178	An efficient immunization strategy for community networks. <i>PLoS ONE</i> , 2013 , 8, e83489	3.7	43
178 177	An efficient immunization strategy for community networks. <i>PLoS ONE</i> , 2013 , 8, e83489 Multi-armed spirals and multi-pairs antispirals in spatial rockpaper. Section A: General, Atomic and Solid State Physics, 2012 , 376, 2292-2297	3·7 2·3	43 23
	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperEcissors games. <i>Physics Letters</i> ,	2.3	
177	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperEcissors games. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2292-2297	2.3	23
177 176	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperBcissors games. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2292-2297 Controlling complex networks: how much energy is needed?. <i>Physical Review Letters</i> , 2012 , 108, 21870.	2.3 3 7.4	23
177 176 175	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperBcissors games. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2292-2297 Controlling complex networks: how much energy is needed? <i>Physical Review Letters</i> , 2012 , 108, 21870. Scarring of Dirac fermions in chaotic billiards. <i>Physical Review E</i> , 2012 , 86, 016702 Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems?	2.3 3 7.4 2.4	23 249 20
177 176 175	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperBcissors games. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2012 , 376, 2292-2297 Controlling complex networks: how much energy is needed? <i>Physical Review Letters</i> , 2012 , 108, 21870. Scarring of Dirac fermions in chaotic billiards. <i>Physical Review E</i> , 2012 , 86, 016702 Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems? <i>Chaos</i> , 2012 , 22, 033119	2.3 3 7.4 2.4	23 249 20 8
177 176 175 174	Multi-armed spirals and multi-pairs antispirals in spatial rockpaperBcissors games. <i>Physics Letters, Section A: General, Atomic and Solid State Physics,</i> 2012 , 376, 2292-2297 Controlling complex networks: how much energy is needed? <i>Physical Review Letters,</i> 2012 , 108, 21870. Scarring of Dirac fermions in chaotic billiards. <i>Physical Review E,</i> 2012 , 86, 016702 Forecasting the future: is it possible for adiabatically time-varying nonlinear dynamical systems? <i>Chaos,</i> 2012 , 22, 033119 Emergence of grouping in multi-resource minority game dynamics. <i>Scientific Reports,</i> 2012 , 2, 703 Optimizing controllability of complex networks by minimum structural perturbations. <i>Physical</i>	2.3 3 7.4 2.4 3.3 4.9	23 249 20 8

(2011-2012)

169	Optimizing cooperation on complex networks in the presence of failure. <i>Physical Review E</i> , 2012 , 86, 045101	2.4	3
168	Cascading dynamics on random networks: crossover in phase transition. <i>Physical Review E</i> , 2012 , 85, 02	61.10	47
167	Conductance fluctuations in graphene systems: The relevance of classical dynamics. <i>Physical Review B</i> , 2012 , 85,	3.3	16
166	Modulating quantum transport by transient chaos. <i>Applied Physics Letters</i> , 2012 , 100, 093105	3.4	29
165	Origin of chaotic transients in excitatory pulse-coupled networks. <i>Physical Review E</i> , 2012 , 86, 066214	2.4	7
164	Onset of chaotic phase synchronization in complex networks of coupled heterogeneous oscillators. <i>Physical Review E</i> , 2012 , 86, 027201	2.4	9
163	Detecting hidden nodes in complex networks from time series. <i>Physical Review E</i> , 2012 , 85, 065201	2.4	55
162	PROBING COMPLEX NETWORKS FROM MEASURED TIME SERIES. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2012 , 22, 1250236	2	9
161	Effect of chaos on relativistic quantum tunneling. Europhysics Letters, 2012, 98, 50007	1.6	12
160	Transient Chaos. Applied Mathematical Sciences (Switzerland), 2011,	0.9	253
159	Geometry-dependent conductance oscillations in graphene quantum dots. <i>Europhysics Letters</i> , 2011 , 94, 58003	1.6	5
158	Time-seriesBased prediction of complex oscillator networks via compressive sensing. <i>Europhysics Letters</i> , 2011 , 94, 48006	1.6	76
157	Quantum chaotic scattering in graphene systems. <i>Europhysics Letters</i> , 2011 , 94, 40004	1.6	37
156	Cascading dynamics in complex quantum networks. <i>Chaos</i> , 2011 , 21, 025107	3.3	8
155	Predicting catastrophes in nonlinear dynamical systems by compressive sensing. <i>Physical Review Letters</i> , 2011 , 106, 154101	7.4	202
154	Characteristics of level-spacing statistics in chaotic graphene billiards. <i>Chaos</i> , 2011 , 21, 013102	3.3	28
153	Network Reconstruction Based on Evolutionary-Game Data via Compressive Sensing. <i>Physical Review X</i> , 2011 , 1,	9.1	74
152	Pattern formation, synchronization, and outbreak of biodiversity in cyclically competing games. <i>Physical Review E</i> , 2011 , 83, 011917	2.4	55

151	Abnormal electron paths induced by Klein tunneling in graphene quantum point contacts. <i>Physical Review B</i> , 2011 , 84,	3.3	14
150	Transportation dynamics on networks of mobile agents. <i>Physical Review E</i> , 2011 , 83, 016102	2.4	36
149	Cascading failures and the emergence of cooperation in evolutionary-game based models of social and economical networks. <i>Chaos</i> , 2011 , 21, 033112	3.3	42
148	Quasipotential approach to critical scaling in noise-induced chaos. <i>Physical Review E</i> , 2010 , 81, 056208	2.4	18
147	Role of intraspecific competition in the coexistence of mobile populations in spatially extended ecosystems. <i>Chaos</i> , 2010 , 20, 023113	3.3	41
146	Basins of coexistence and extinction in spatially extended ecosystems of cyclically competing species. <i>Chaos</i> , 2010 , 20, 045116	3.3	31
145	Noise bridges dynamical correlation and topology in coupled oscillator networks. <i>Physical Review Letters</i> , 2010 , 104, 058701	7.4	136
144	Control of transmission in disordered graphene nanojunctions through stochastic resonance. <i>Applied Physics Letters</i> , 2010 , 96, 262114	3.4	9
143	Basins of attraction for species extinction and coexistence in spatial rock-paper-scissors games. <i>Physical Review E</i> , 2010 , 81, 030901	2.4	55
142	Effect of epidemic spreading on species coexistence in spatial rock-paper-scissors games. <i>Physical Review E</i> , 2010 , 81, 046113	2.4	46
141	Cascade of elimination and emergence of pure cooperation in coevolutionary games on networks. <i>Physical Review E</i> , 2010 , 81, 035102	2.4	48
140	Epileptic seizures: Quakes of the brain?. <i>Physical Review E</i> , 2010 , 82, 021919	2.4	79
139	Cyclic competition of mobile species on continuous space: pattern formation and coexistence. <i>Physical Review E</i> , 2010 , 82, 066211	2.4	49
138	Extensively chaotic motion in electrostatically driven nanowires and applications. <i>Nano Letters</i> , 2010 , 10, 406-13	11.5	33
137	Relativistic quantum level-spacing statistics in chaotic graphene billiards. <i>Physical Review E</i> , 2010 , 81, 055203	2.4	66
136	Emergence of loop structure in scale-free networks and dynamical consequences. <i>Physical Review E</i> , 2009 , 79, 056106	2.4	13
135	Abnormal cascading on complex networks. <i>Physical Review E</i> , 2009 , 80, 036109	2.4	35
134	Transient disorder in dynamically growing networks. <i>Physical Review E</i> , 2009 , 79, 046101	2.4	3

(2007-2009)

133	Scaling of noisy fluctuations in complex networks and applications to network prediction. <i>Physical Review E</i> , 2009 , 80, 016116	2.4	37
132	Inducing intrinsic localized modes in microelectromechanical cantilever arrays by frequency modulation. <i>Applied Physics Letters</i> , 2009 , 95, 094102	3.4	1
131	Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. <i>Physical Review E</i> , 2009 , 79, 026112	2.4	110
130	Generic behavior of master-stability functions in coupled nonlinear dynamical systems. <i>Physical Review E</i> , 2009 , 80, 036204	2.4	168
129	Dependence of intermittency scaling on threshold in chaotic systems. <i>Physical Review E</i> , 2009 , 80, 0572	.0 2 .4	3
128	Relativistic quantum scars. <i>Physical Review Letters</i> , 2009 , 103, 054101	7.4	65
127	Desynchronization and on-off intermittency in complex networks. <i>Europhysics Letters</i> , 2009 , 88, 28001	1.6	20
126	Inducing Chaos in MOSFET-Based Electronic Circuits. <i>Circuits, Systems, and Signal Processing</i> , 2009 , 28, 535-545	2.2	6
125	Understanding and preventing cascading breakdown in complex clustered networks. <i>Physical Review E</i> , 2008 , 78, 036116	2.4	36
124	Characterization of nonstationary chaotic systems. <i>Physical Review E</i> , 2008 , 77, 026208	2.4	16
123	Alternating synchronizability of complex clustered networks with regular local structure. <i>Physical Review E</i> , 2008 , 77, 016103	2.4	22
122	Observation-based control of rare intense events in the complex Ginzburg-Landau equation. <i>Physical Review E</i> , 2008 , 78, 015201	2.4	8
121	Chaos-induced intrinsic localized modes in coupled microcantilever arrays. <i>Applied Physics Letters</i> , 2008 , 92, 241914	3.4	10
120	Transition to global synchronization in clustered networks. <i>Physical Review E</i> , 2008 , 77, 046211	2.4	38
119	Chaotic transients in spatially extended systems. <i>Physics Reports</i> , 2008 , 460, 245-275	27.7	104
118	. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007 , 54, 1109-1119		17
117	Efficiency of carrier-phase integer ambiguity resolution for precise GPS positioning in noisy environments. <i>Journal of Geodesy</i> , 2007 , 81, 149-156	4.5	8
116	Synchronization in complex clustered networks. <i>Frontiers of Physics in China</i> , 2007 , 2, 446-459		8

115	EXTREME FLUCTUATIONS OF FINITE-TIME LYAPUNOV EXPONENTS IN CHAOTIC SYSTEMS. International Journal of Modern Physics B, 2007 , 21, 3941-3946	1.1	2
114	Frequency dependence of phase-synchronization time in nonlinear dynamical systems. <i>Chaos</i> , 2007 , 17, 043111	3.3	5
113	Optimization of synchronization in gradient clustered networks. <i>Physical Review E</i> , 2007 , 76, 056113	2.4	23
112	Fractal dimension in dissipative chaotic scattering. <i>Physical Review E</i> , 2007 , 76, 016208	2.4	51
111	Enhancing synchronization based on complex gradient networks. <i>Physical Review E</i> , 2007 , 75, 056205	2.4	81
110	Characterization of synchrony with applications to epileptic brain signals. <i>Physical Review Letters</i> , 2007 , 98, 108102	7.4	32
109	Noise sensitivity of phase-synchronization time in stochastic resonance: theory and experiment. <i>Physical Review E</i> , 2007 , 75, 046205	2.4	6
108	Detecting and characterizing phase synchronization in nonstationary dynamical systems. <i>Physical Review E</i> , 2006 , 73, 026214	2.4	25
107	Basin topology in dissipative chaotic scattering. <i>Chaos</i> , 2006 , 16, 023101	3.3	56
106	Abnormal synchronization in complex clustered networks. <i>Physical Review Letters</i> , 2006 , 97, 164101	7.4	118
105	Synchronization in complex networks with a modular structure. <i>Chaos</i> , 2006 , 16, 015105	3.3	74
104	Noise-sensitive measure for stochastic resonance in biological oscillators. <i>Mathematical Biosciences and Engineering</i> , 2006 , 3, 583-602	2.1	4
103	Onset of traffic congestion in complex networks. <i>Physical Review E</i> , 2005 , 71, 026125	2.4	349
102	Complex networks: Dynamics and security 2005 , 64, 483-502		26
101	Scaling laws for noise-induced super-persistent chaotic transients. <i>Physical Review E</i> , 2005 , 71, 046208	2.4	10
100	Beneficial role of noise in promoting species diversity through stochastic resonance. <i>Physical Review E</i> , 2005 , 72, 042901	2.4	11
99	Inducing chaos by resonant perturbations: theory and experiment. <i>Physical Review Letters</i> , 2005 , 94, 214101	7.4	22
98	Noise promotes species diversity in nature. <i>Physical Review Letters</i> , 2005 , 94, 038102	7.4	31

(2002-2005)

97	Tolerance of scale-free networks against attack-induced cascades. <i>Physical Review E</i> , 2005 , 72, 025104	2.4	100
96	Correlation dimension and integral do not predict epileptic seizures. <i>Chaos</i> , 2005 , 15, 33106	3.3	41
95	Basins of attraction in piecewise smooth Hamiltonian systems. <i>Physical Review E</i> , 2005 , 72, 025201	2.4	9
94	Capacity of oscillatory associative-memory networks with error-free retrieval. <i>Physical Review Letters</i> , 2004 , 92, 108101	7.4	53
93	Attack vulnerability of scale-free networks due to cascading breakdown. <i>Physical Review E</i> , 2004 , 70, 035101	2.4	232
92	Effect of noise on the neutral direction of chaotic attractor. <i>Chaos</i> , 2004 , 14, 189-92	3.3	3
91	Strange nonchaotic attractors in random dynamical systems. <i>Physical Review Letters</i> , 2004 , 92, 074102	7.4	33
90	Controlled test for predictive power of Lyapunov exponents: their inability to predict epileptic seizures. <i>Chaos</i> , 2004 , 14, 630-42	3.3	42
89	Oscillatory associative memory network with perfect retrieval. <i>Physica D: Nonlinear Phenomena</i> , 2004 , 197, 134-148	3.3	16
88	Extraordinarily superpersistent chaotic transients. <i>Europhysics Letters</i> , 2004 , 67, 914-920	1.6	17
87	Noise-induced unstable dimension variability and transition to chaos in random dynamical systems. <i>Physical Review E</i> , 2003 , 67, 026210	2.4	37
86	Heterogeneity in oscillator networks: are smaller worlds easier to synchronize?. <i>Physical Review Letters</i> , 2003 , 91, 014101	7.4	658
85	Inability of Lyapunov exponents to predict epileptic seizures. <i>Physical Review Letters</i> , 2003 , 91, 068102	7.4	54
84	Superpersistent chaotic transients in physical space: advective dynamics of inertial particles in open chaotic flows under noise. <i>Physical Review Letters</i> , 2003 , 91, 224101	7.4	18
83	Detectability of dynamical coupling from delay-coordinate embedding of scalar time series. <i>Physical Review E</i> , 2002 , 66, 036217	2.4	4
82	Transition to chaos in continuous-time random dynamical systems. <i>Physical Review Letters</i> , 2002 , 88, 124101	7.4	23
81	Chaotic scattering in deformed optical microlasing cavities. <i>Physical Review E</i> , 2002 , 65, 046204	2.4	3
80	Cascade-based attacks on complex networks. <i>Physical Review E</i> , 2002 , 66, 065102	2.4	1038

79	Shadowability of statistical averages in chaotic systems. <i>Physical Review Letters</i> , 2002 , 89, 184101	7.4	5
78	Correlation-dimension and autocorrelation fluctuations in epileptic seizure dynamics. <i>Physical Review E</i> , 2002 , 65, 031921	2.4	28
77	Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors. <i>Physical Review E</i> , 2002 , 65, 026209	2.4	20
76	Tunneling and nonhyperbolicity in quantum dots. <i>Physical Review Letters</i> , 2002 , 88, 236804	7.4	67
75	Observations on the application of the correlation dimension and correlation integral to the prediction of seizures. <i>Journal of Clinical Neurophysiology</i> , 2001 , 18, 269-74	2.2	42
74	How often are chaotic transients in spatially extended ecological systems?. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2001 , 280, 297-302	2.3	10
73	Dynamical mechanism for coexistence of dispersing species. <i>Journal of Theoretical Biology</i> , 2001 , 213, 53-72	2.3	18
72	SUPER PERSISTENT CHAOTIC TRANSIENTS IN PHYSICAL SYSTEMS: EFFECT OF NOISE ON PHASE SYNCHRONIZATION OF COUPLED CHAOTIC OSCILLATORS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2001 , 11, 2607-2619	2	6
71	Coherence resonance in coupled chaotic oscillators. <i>Physical Review Letters</i> , 2001 , 86, 4737-40	7.4	57
70	Phase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators. <i>Physical Review E</i> , 2001 , 63, 055201	2.4	53
69	Dynamical mechanism for coexistence of dispersing species without trade-offs in spatially extended ecological systems. <i>Physical Review E</i> , 2001 , 63, 051905	2.4	21
68	Catastrophic bifurcation from riddled to fractal basins. <i>Physical Review E</i> , 2001 , 64, 056228	2.4	10
67	Noise-enhanced temporal regularity in coupled chaotic oscillators. <i>Physical Review E</i> , 2001 , 64, 066202	2.4	17
66	Experimental observation of generalized time-lagged chaotic synchronization. <i>Physical Review E</i> , 2001 , 64, 045205	2.4	19
65	Analyses of transient chaotic time series. <i>Physical Review E</i> , 2001 , 64, 056207	2.4	30
64	Perturbed on-off intermittency. <i>Physical Review E</i> , 2001 , 64, 016220	2.4	16
63	Experimental observation of superpersistent chaotic transients. <i>Physical Review Letters</i> , 2001 , 86, 4017	- <i>3</i> :04	42
62	Regular dynamics of low-frequency fluctuations in external cavity semiconductor lasers. <i>Physical Review E</i> , 2001 , 63, 056206	2.4	13

61	EXPERIMENTAL OBSERVATION OF LAG SYNCHRONIZATION IN COUPLED CHAOTIC SYSTEMS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 2587-2594	2	22	
60	OBSTRUCTION TO DETERMINISTIC MODELING OF CHAOTIC SYSTEMS WITH AN INVARIANT SUBSPACE. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000 , 10, 683-693	2	9	
59	FEEDBACK SYNCHRONIZATION USING POLE-PLACEMENT CONTROL. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2000 , 10, 2611-2617	2	1	
58	Detecting unstable periodic orbits from transient chaotic time series. <i>Physical Review E</i> , 2000 , 61, 6485	-92.4	28	
57	Noise scaling of phase synchronization of chaos. <i>Physical Review E</i> , 2000 , 61, 3230-3233	2.4	30	
56	Catastrophe of riddling. <i>Physical Review E</i> , 2000 , 62, R4505-8	2.4	5	
55	Estimating generating partitions of chaotic systems by unstable periodic orbits. <i>Physical Review E</i> , 2000 , 61, 1353-6	2.4	53	
54	Topological scaling and gap filling at crisis. <i>Physical Review E</i> , 2000 , 61, 5019-32	2.4	27	
53	Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series. <i>Physical Review Letters</i> , 2000 , 85, 3524-7	7.4	56	
52	Intermittency in chaotic rotations. <i>Physical Review E</i> , 2000 , 62, R29-32	2.4	13	
51	Topology of high-dimensional chaotic scattering. <i>Physical Review E</i> , 2000 , 62, 6421-8	2.4	19	
50	BIFURCATION TO HIGH-DIMENSIONAL CHAOS. <i>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering</i> , 2000 , 10, 1471-1483	2	14	
49	CONTROL AND APPLICATIONS OF CHAOS. World Scientific Series on Nonlinear Science, Series A, 1999 , 457-493	3.3		
48	Universal behavior in the parametric evolution of chaotic saddles. <i>Physical Review E</i> , 1999 , 59, 5261-5	2.4	11	
47	Modeling of deterministic chaotic systems. <i>Physical Review E</i> , 1999 , 59, 2907-2910	2.4	45	
46	Unstable dimension variability in coupled chaotic systems. <i>Physical Review E</i> , 1999 , 60, 5445-54	2.4	24	
45	Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology. <i>Physical Review E</i> , 1999 , 59, 1646-1655	2.4	74	
44	Riddling of Chaotic Sets in Periodic Windows. <i>Physical Review Letters</i> , 1999 , 83, 2926-2929	7.4	22	

43	Efficient algorithm for detecting unstable periodic orbits in chaotic systems. <i>Physical Review E</i> , 1999 , 60, 6172-5	2.4	65
42	Modeling of Coupled Chaotic Oscillators. <i>Physical Review Letters</i> , 1999 , 82, 4803-4806	7.4	48
41	Abrupt bifurcation to chaotic scattering with discontinuous change in fractal dimension. <i>Physical Review E</i> , 1999 , 60, R6283-6	2.4	14
40	Metamorphosis of chaotic saddle. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1999 , 259, 445-450	2.3	11
39	Effective scaling regime for computing the correlation dimension from chaotic time series. <i>Physica D: Nonlinear Phenomena</i> , 1998 , 115, 1-18	3.3	59
38	Antiphase synchronism in chaotic systems. <i>Physical Review E</i> , 1998 , 58, 382-386	2.4	77
37	Analytic signals and the transition to chaos in deterministic flows. <i>Physical Review E</i> , 1998 , 58, R6911-R	R6 9.1 4	15
36	Dynamics of coding in communicating with chaos. <i>Physical Review E</i> , 1998 , 58, 1724-1736	2.4	35
35	Basin bifurcation in quasiperiodically forced systems. <i>Physical Review E</i> , 1998 , 58, 3060-3066	2.4	21
34	Scaling laws for noise-induced temporal riddling in chaotic systems. <i>Physical Review E</i> , 1997 , 56, 3897-3	39 <u>6</u>8	7
33	Bifurcation to strange nonchaotic attractors. <i>Physical Review E</i> , 1997 , 56, 1623-1630	2.4	33
32	Coding, Channel Capacity, and Noise Resistance in Communicating with Chaos. <i>Physical Review Letters</i> , 1997 , 79, 3787-3790	7.4	85
31	Phase Characterization of Chaos. <i>Physical Review Letters</i> , 1997 , 79, 3885-3888	7.4	104
30	Characterization of the Natural Measure by Unstable Periodic Orbits in Chaotic Attractors. <i>Physical Review Letters</i> , 1997 , 79, 649-652	7.4	57
29	Controlling chaos in high dimensions. <i>IEEE Transactions on Circuits and Systems Part 1: Regular Papers</i> , 1997 , 44, 971-975		29
28	Controlling chaotic dynamical systems. Systems and Control Letters, 1997, 31, 307-312	2.4	48
27	Riddling Bifurcation in Chaotic Dynamical Systems. <i>Physical Review Letters</i> , 1996 , 77, 55-58	7.4	165
26	An upper bound for the proper delay time in chaotic time-series analysis. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 218, 30-34	2.3	13

25	Driving trajectories to a desirable attractor by using small control. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1996 , 221, 375-383	2.3	29
24	Blowout Bifurcation Route to Strange Nonchaotic Attractors. <i>Physical Review Letters</i> , 1996 , 77, 5039-50	0 4 724	92
23	Controlling on-off intermittent dynamics. <i>Physical Review E</i> , 1996 , 54, 1190-1199	2.4	17
22	Distinct small-distance scaling behavior of on-off intermittency in chaotic dynamical systems. <i>Physical Review E</i> , 1996 , 54, 321-327	2.4	28
21	Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems. <i>Physical Review E</i> , 1996 , 53, R4267-R4270	2.4	44
20	Noise-Induced Riddling in Chaotic Systems. <i>Physical Review Letters</i> , 1996 , 77, 5047-5050	7.4	56
19	Scaling behavior of transition to chaos in quasiperiodically driven dynamical systems. <i>Physical Review E</i> , 1996 , 54, 6070-6073	2.4	31
18	Transition from strange nonchaotic to strange chaotic attractors. <i>Physical Review E</i> , 1996 , 53, 57-65	2.4	53
17	Critical Exponent for Gap Filling at Crisis. <i>Physical Review Letters</i> , 1996 , 77, 3102-3105	7.4	29
16	Persistence of supertransients of spatiotemporal chaotic dynamical systems in noisy environment. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1995 , 200, 418-422	2.3	12
15	Intermingled basins and two-state on-off intermittency. <i>Physical Review E</i> , 1995 , 52, R3313-R3316	2.4	118
14	Selection of a desirable chaotic phase using small feedback control. <i>Physical Review E</i> , 1995 , 51, 3842-3	8 <u>4</u> 8µ	15
13	Geometric properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems. <i>Physical Review Letters</i> , 1995 , 74, 5208-5211	7.4	68
12	Riddled parameter space in spatiotemporal chaotic dynamical systems. <i>Physical Review Letters</i> , 1994 , 72, 1640-1643	7·4	47
11	Fractal basin boundaries in coupled map lattices. <i>Physical Review E</i> , 1994 , 50, 3470-3473	2.4	7
10	Crisis and enhancement of chaotic scattering. <i>Physical Review E</i> , 1994 , 49, 3761-3770	2.4	20
9	Extreme sensitive dependence on parameters and initial conditions in spatio-temporal chaotic dynamical systems. <i>Physica D: Nonlinear Phenomena</i> , 1994 , 74, 353-371	3.3	34
8	Converting transient chaos into sustained chaos by feedback control. <i>Physical Review E</i> , 1994 , 49, 1094	-1 <u>1</u> 0248	31

7	Synchronization of chaotic trajectories using control. <i>Physical Review E</i> , 1993 , 47, 2357-2360	2.4	114
6	Crisis in chaotic scattering. <i>Physical Review Letters</i> , 1993 , 71, 2212-2215	7.4	26
5	ABRUPT DIMENSION CHANGES AT BASIN BOUNDARY METAMORPHOSES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1992 , 02, 533-541	2	7
4	Algebraic decay and fluctuations of the decay exponent in Hamiltonian systems. <i>Physical Review A</i> , 1992 , 46, 4661-4669	2.6	57
3	Quantum manifestations of chaotic scattering. <i>Physical Review Letters</i> , 1992 , 68, 3491-3494	7:4	105
2	Neuronal Synchronization and the Letio-Centriclys the Network Theory for Ictiogenesis: Mechanistic and Therapeutic Implications for Clinical Epileptology109-115		1
1	Double-Edged Role of Resource Competition in Gene Expression Noise and Control. <i>Genetics</i> & <i>Genomics Next</i> ,2100047	1.2	О