
## Armando Venâncio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741322/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Potential of Fatty Acids and Their Derivatives as Antifungal Agents: A Review. Toxins, 2022, 14, 188.                                                                                                                  | 3.4  | 35        |
| 2  | Effect of pH and temperature on phytase and biomass production by submerged fermentation with<br>Aspergillus niger var. phoenicis URM 4924. Research, Society and Development, 2022, 11, e41311628994.                     | 0.1  | 2         |
| 3  | Application of laccases for mycotoxin decontamination. World Mycotoxin Journal, 2021, 14, 61-73.                                                                                                                           | 1.4  | 3         |
| 4  | Global trends for patulin adsorption: A review. Research, Society and Development, 2021, 10, e58310616162.                                                                                                                 | 0.1  | 1         |
| 5  | Fruit-Based Non-Dairy Beverage: A New Approach for Probiotics. Advances in Biological Chemistry, 2021, 11, 302-330.                                                                                                        | 0.6  | 8         |
| 6  | The Route of Mycotoxins in the Grape Food Chain. American Journal of Enology and Viticulture, 2020,<br>71, 89-104.                                                                                                         | 1.7  | 17        |
| 7  | Effect of Gamma-Radiation on Zearalenone—Degradation, Cytotoxicity and Estrogenicity. Foods, 2020,<br>9, 1687.                                                                                                             | 4.3  | 15        |
| 8  | Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus buchneri for Penicillium nordicum Control in Cheese. Food and Bioprocess Technology, 2020, 13, 1074-1086.                                        | 4.7  | 34        |
| 9  | Detection Methods for Aflatoxin M1 in Dairy Products. Microorganisms, 2020, 8, 246.                                                                                                                                        | 3.6  | 58        |
| 10 | Occurrence and Co-Occurrence of Mycotoxins in Cereal-Based Feed and Food. Microorganisms, 2020, 8, 74.                                                                                                                     | 3.6  | 109       |
| 11 | Mycotoxin mixtures in food and feed: holistic, innovative, flexible risk assessment modelling approach:. EFSA Supporting Publications, 2020, 17, 1757E.                                                                    | 0.7  | 38        |
| 12 | Mycotoxins in maize: mitigation actions, with a chain management approach. Phytopathologia<br>Mediterranea, 2020, 59, 5-28.                                                                                                | 1.3  | 13        |
| 13 | Mycotoxigenic fungi in plant-based supplements and medicines. Current Opinion in Food Science, 2019, 30, 27-31.                                                                                                            | 8.0  | 19        |
| 14 | BSA-based sample clean-up columns for ochratoxin A determination in wine: Method development and validation. Food Chemistry, 2019, 300, 125204.                                                                            | 8.2  | 15        |
| 15 | Mycobiota and mycotoxins in Portuguese pork, goat and sheep dry-cured hams. Mycotoxin Research, 2019, 35, 405-412.                                                                                                         | 2.3  | 18        |
| 16 | Thin Films Sensor Devices for Mycotoxins Detection in Foods: Applications and Challenges.<br>Chemosensors, 2019, 7, 3.                                                                                                     | 3.6  | 19        |
| 17 | Pre―and Postharvest Strategies to Minimize Mycotoxin Contamination in the Rice Food Chain.<br>Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 441-454.                                                    | 11.7 | 63        |
| 18 | Mediterranean agroâ€industrial wastes as valuable substrates for lignocellulolytic enzymes and<br>protein production by solidâ€state fermentation. Journal of the Science of Food and Agriculture, 2018,<br>98, 5248-5256. | 3.5  | 33        |

Armando Venâncio

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 2018, 240, 463-471.                                                                                             | 8.2  | 62        |
| 20 | Anti-aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. International Journal of Food Microbiology, 2018, 264, 31-38.                                                                                 | 4.7  | 103       |
| 21 | Lipase production by solidâ€state fermentation of olive pomace in trayâ€type and pressurized bioreactors.<br>Journal of Chemical Technology and Biotechnology, 2018, 93, 1312-1319.                                           | 3.2  | 8         |
| 22 | Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Research<br>International, 2018, 103, 478-491.                                                                                           | 6.2  | 69        |
| 23 | Toxic reagents and expensive equipment: are they really necessary for the extraction of good quality fungal DNA?. Letters in Applied Microbiology, 2018, 66, 32-37.                                                           | 2.2  | 20        |
| 24 | Antifungal effect of organic acids from lactic acid bacteria on <i>Penicillium nordicum</i> . Food<br>Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018,<br>35, 1803-1818. | 2.3  | 76        |
| 25 | Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. Food and Bioproducts Processing, 2017, 102, 268-277.                                                | 3.6  | 52        |
| 26 | Optimization of lipase production by solid-state fermentation of olive pomace: from flask to<br>laboratory-scale packed-bed bioreactor. Bioprocess and Biosystems Engineering, 2017, 40, 1123-1132.                           | 3.4  | 43        |
| 27 | Evaluation of Saccharomyces cerevisiae as an anti-fumonisin B1 additive in a horse digestion model.<br>World Mycotoxin Journal, 2017, 10, 121-130.                                                                            | 1.4  | 1         |
| 28 | Chapter 15. Biological Techniques. Food Chemistry, Function and Analysis, 2017, , 314-336.                                                                                                                                    | 0.2  | 0         |
| 29 | A Review of Mycotoxins in Food and Feed Products in Portugal and Estimation of Probable Daily<br>Intakes. Critical Reviews in Food Science and Nutrition, 2016, 56, 249-265.                                                  | 10.3 | 105       |
| 30 | Inhibitory effect of essential oils on growth and on aflatoxins production by Aspergillus parasiticus.<br>World Mycotoxin Journal, 2016, 9, 525-534.                                                                          | 1.4  | 16        |
| 31 | Ultrasounds pretreatment of olive pomace to improve xylanase and cellulase production by solid-state fermentation. Bioresource Technology, 2016, 214, 737-746.                                                                | 9.6  | 89        |
| 32 | Combined bioremediation and enzyme production by Aspergillus sp. in olive mill and winery wastewaters. International Biodeterioration and Biodegradation, 2016, 110, 16-23.                                                   | 3.9  | 46        |
| 33 | Simultaneous Determination of Deoxynivalenol, Deoxynivalenol-3-Glucoside and Nivalenol in Wheat<br>Grains by HPLC-PDA with Immunoaffinity Column Cleanup. Food Analytical Methods, 2016, 9, 2579-2586.                        | 2.6  | 28        |
| 34 | A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium<br>incarnatum-equiseti species complex. International Journal of Food Microbiology, 2016, 234, 24-35.                           | 4.7  | 55        |
| 35 | Olive pomace valorization by <i>Aspergillus</i> species: lipase production using solidâ€state<br>fermentation. Journal of the Science of Food and Agriculture, 2016, 96, 3583-3589.                                           | 3.5  | 36        |
| 36 | Zearalenone and Its Derivatives α-Zearalenol and β-Zearalenol Decontamination by Saccharomyces cerevisiae Strains Isolated from Bovine Forage. Toxins, 2015, 7, 3297-3308.                                                    | 3.4  | 53        |

| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic<br>Enzymes and Animal Feed by <i>Aspergillus uvarum</i> Using a Packed-Bed Bioreactor. Journal of<br>Agricultural and Food Chemistry, 2015, 63, 9306-9314. | 5.2  | 42        |
| 38 | Sonication of olive pomace to improve xylanases production by SSF. , 2015, , 127-132.                                                                                                                                                                 |      | 0         |
| 39 | Scale-up of aspergillus ibericus lipase production by solid-state fermentation. , 2015, , 203-208.                                                                                                                                                    |      | 0         |
| 40 | Aspergillus ibericus lipase production by solid-state fermentation of olive pomace. , 2015, , 195-201.                                                                                                                                                |      | 0         |
| 41 | Irradiation for Mold and Mycotoxin Control: A Review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 1049-1061.                                                                                                                     | 11.7 | 146       |
| 42 | Integrated Use of Residues from Olive Mill and Winery for Lipase Production by Solid State<br>Fermentation with Aspergillus sp Applied Biochemistry and Biotechnology, 2014, 172, 1832-1845.                                                          | 2.9  | 40        |
| 43 | Screening of winery and olive mill wastes for lignocellulolytic enzyme production from Aspergillus species by solid-state fermentation. Biomass Conversion and Biorefinery, 2014, 4, 201-209.                                                         | 4.6  | 24        |
| 44 | Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. International<br>Journal of Food Microbiology, 2014, 188, 45-52.                                                                                                    | 4.7  | 95        |
| 45 | Incidence and diversity of the fungal genera Aspergillus and Penicillium in Portuguese almonds and chestnuts. European Journal of Plant Pathology, 2013, 137, 197-209.                                                                                | 1.7  | 20        |
| 46 | Mycotoxin production by Aspergillus niger aggregate strains isolated from harvested maize in three<br>Portuguese regions. Revista Iberoamericana De Micologia, 2013, 30, 9-13.                                                                        | 0.9  | 31        |
| 47 | Interaction with <i>Penicillium expansum</i> enhances <i>Botrytis cinerea</i> growth in grape juice<br>medium and prevents patulin accumulation <i>in vitro</i> . Letters in Applied Microbiology, 2013, 56,<br>356-360.                              | 2.2  | 11        |
| 48 | Potential of Aqueous Ozone to Control Aflatoxigenic Fungi in Brazil Nuts. ISRN Biotechnology, 2013, 2013, 1-6.                                                                                                                                        | 1.9  | 14        |
| 49 | Dairy. Contemporary Food Engineering, 2013, , 295-326.                                                                                                                                                                                                | 0.2  | 0         |
| 50 | Mycobiota and mycotoxins of almonds and chestnuts with special reference to aflatoxins. Food Research International, 2012, 48, 76-90.                                                                                                                 | 6.2  | 55        |
| 51 | Three new species of <i>Aspergillus</i> section <i>Flavi</i> isolated from almonds and maize in Portugal. Mycologia, 2012, 104, 682-697.                                                                                                              | 1.9  | 67        |
| 52 | Aflatoxigenic Fungi and Aflatoxins in Portuguese Almonds. Scientific World Journal, The, 2012, 2012, 1-9.                                                                                                                                             | 2.1  | 20        |
| 53 | Incidence of Fumonisin B <sub>2</sub> Production by Aspergillus niger in Portuguese Wine Regions.<br>Journal of Agricultural and Food Chemistry, 2011, 59, 7514-7518.                                                                                 | 5.2  | 31        |
| 54 | A FLUORESCENCE-LC METHOD WITH NDA PRE-COLUMN DERIVATIZATION FOR FUMONISIN B2DETERMINATION IN BLACK ASPERGILLI CULTURES. Journal of Liquid Chromatography and Related Technologies, 2011, 34, 1594-1603.                                               | 1.0  | 5         |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reactivity of Human Salivary Proteins Families Toward Food Polyphenols. Journal of Agricultural and Food Chemistry, 2011, 59, 5535-5547.                                                                                        | 5.2 | 128       |
| 56 | Brazil nuts: Benefits and risks associated with contamination by fungi and mycotoxins. Food Research<br>International, 2011, 44, 1434-1440.                                                                                     | 6.2 | 57        |
| 57 | Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. Journal of Applied Microbiology, 2011, 111, 877-892.                 | 3.1 | 79        |
| 58 | Optimization of process parameters for the production of an OTA-hydrolyzing enzyme from<br>Aspergillus niger under solid-state fermentation. Journal of Bioscience and Bioengineering, 2011, 112,<br>351-355.                   | 2.2 | 19        |
| 59 | Effects of the origins of Botrytis cinerea on earthy aromas from grape broth media further inoculated with Penicillium expansum. Food Microbiology, 2011, 28, 1048-1053.                                                        | 4.2 | 33        |
| 60 | Predominant mycobiota and aflatoxin content in Brazil nuts. Journal Fur Verbraucherschutz Und<br>Lebensmittelsicherheit, 2011, 6, 465-472.                                                                                      | 1.4 | 4         |
| 61 | Tracing Fungi Secondary Metabolites in Brazil Nuts Using LC-MS/MS. Drug Metabolism Letters, 2011, 5, 150-155.                                                                                                                   | 0.8 | 9         |
| 62 | HPLC method for simultaneous detection of aflatoxins and cyclopiazonic acid. World Mycotoxin<br>Journal, 2010, 3, 225-231.                                                                                                      | 1.4 | 27        |
| 63 | Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Applied Microbiology, 2010, 108, 375-385.                                                      | 3.1 | 142       |
| 64 | Microextraction and Gas Chromatography/Mass Spectrometry for improved analysis of geosmin and<br>other fungal "off―volatiles in grape juice. Journal of Microbiological Methods, 2010, 83, 48-52.                               | 1.6 | 32        |
| 65 | Biodegradation of Ochratoxin A for Food and Feed Decontamination. Toxins, 2010, 2, 1078-1099.                                                                                                                                   | 3.4 | 161       |
| 66 | Ozone applications to prevent and degrade mycotoxins: a review. Drug Metabolism Reviews, 2010, 42, 612-620.                                                                                                                     | 3.6 | 67        |
| 67 | A polyphasic approach to the identification of aflatoxigenic and non-aflatoxigenic strains of<br>Aspergillus Section Flavi isolated from Portuguese almonds. International Journal of Food<br>Microbiology, 2009, 129, 187-193. | 4.7 | 152       |
| 68 | Liquid–liquid equilibrium of the Ucon 50-HB5100/sodium citrate aqueous two-phase systems.<br>Separation and Purification Technology, 2009, 65, 3-8.                                                                             | 7.9 | 31        |
| 69 | Multilocus sequence identification of Penicillium species in cork bark during plank preparation for the manufacture of stoppers. Research in Microbiology, 2008, 159, 178-186.                                                  | 2.1 | 37        |
| 70 | The Condensation of Salicylaldehydes and Malononitrile Revisited:  Synthesis of New Dimeric<br>Chromene Derivatives. Journal of Organic Chemistry, 2008, 73, 1954-1962.                                                         | 3.2 | 92        |
| 71 | Detection and Determination of Ochratoxin A in Grape Products. , 2008, , 249-259.                                                                                                                                               |     | 1         |
| 72 | In vitro Antifungal Effect of EDTA Disodium Salt in Tested Black Aspergilli. Asian Journal of<br>Biochemistry, 2008, 3, 176-181.                                                                                                | 0.5 | 1         |

Armando Venâncio

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Assessing the degradation of ochratoxin a using a bioassay: the case of contaminated winery wastewater. Water Science and Technology, 2007, 56, 55-61.                | 2.5 | 47        |
| 74 | Antifungal activity of a novel chromene dimer. Journal of Industrial Microbiology and Biotechnology, 2007, 34, 787-792.                                               | 3.0 | 51        |
| 75 | Isolation and purification of an enzyme hydrolyzing ochratoxin A from Aspergillus niger.<br>Biotechnology Letters, 2007, 29, 1909-1914.                               | 2.2 | 74        |
| 76 | The Challenge of Mycotoxins. , 2007, , 26-49.                                                                                                                         |     | 2         |
| 77 | Worldwide interlaboratory study on the determination of ochratoxin A in different wine type samples. Talanta, 2006, 70, 720-731.                                      | 5.5 | 19        |
| 78 | <i>Aspergillus ibericus</i> : a new species of section <i>Nigri</i> isolated from grapes. Mycologia, 2006, 98, 295-306.                                               | 1.9 | 45        |
| 79 | Fungi and ochratoxin A detected in healthy grapes for wine production. Letters in Applied Microbiology, 2006, 42, 42-47.                                              | 2.2 | 35        |
| 80 | Ochratoxin A occurrence and formation in Portuguese wine grapes at various stages of maturation.<br>International Journal of Food Microbiology, 2006, 111, S35-S39.   | 4.7 | 41        |
| 81 | Fungi in bottled water: A case study of a production plant. Revista Iberoamericana De Micologia, 2006,<br>23, 139-144.                                                | 0.9 | 18        |
| 82 | A practical approach for identifications based on mycotoxin characters of Penicillium. Revista<br>Iberoamericana De Micologia, 2006, 23, 155-159.                     | 0.9 | 11        |
| 83 | Application of classification-tree models to characterize the mycobiota of grapes on the basis of origin. Revista Iberoamericana De Micologia, 2006, 23, 171-175.     | 0.9 | 1         |
| 84 | Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species. Mycological Research, 2006, 110, 971-978.          | 2.5 | 70        |
| 85 | Degradation of Ochratoxin A by Proteases and by a Crude Enzyme of Aspergillus niger. Food<br>Biotechnology, 2006, 20, 231-242.                                        | 1.5 | 105       |
| 86 | Aspergillus ibericus: a new species of section Nigri isolated from grapes. Mycologia, 2006, 98, 295-306.                                                              | 1.9 | 74        |
| 87 | Fate of aflatoxin M1 in cheese whey processing. Journal of the Science of Food and Agriculture, 2005, 85, 2067-2070.                                                  | 3.5 | 16        |
| 88 | Evolution of ochratoxin A content from must to wine in Port Wine microvinification. Analytical and Bioanalytical Chemistry, 2005, 382, 405-411.                       | 3.7 | 34        |
| 89 | Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A. Research in Microbiology, 2005, 156, 515-521. | 2.1 | 125       |
| 90 | Determination of ochratoxin A in wine grapes: comparison of extraction procedures and method validation. Analytica Chimica Acta, 2004, 513, 41-47.                    | 5.4 | 45        |

| #   | Article                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Solutions to Penicillium taxonomy crucial to mycotoxin research and health. Research in Microbiology, 2004, 155, 507-513.                                                                                                                                                                                                                             | 2.1 | 44        |
| 92  | Liquidâ^'Liquid Equilibrium Phase Diagrams of New Aqueous Two-Phase Systems:  Ucon 50-HB5100 +<br>Ammonium Sulfate + Water, Ucon 50-HB5100 + Poly(vinyl alcohol) + Water, Ucon 50-HB5100 +<br>Hydroxypropyl Starch + Water, and Poly(ethylene glycol) 8000 + Poly(vinyl alcohol) + Water. Journal<br>of Chemical & Engineering Data, 2004, 49, 43-47. | 1.9 | 22        |
| 93  | An Overview of Mycotoxins and Toxigenic Fungi in Portugal. , 2004, , 173-184.                                                                                                                                                                                                                                                                         |     | 5         |
| 94  | Recovery of the proteose peptone component 3 from cheese whey in Reppal PES 100/polyethylene glycol aqueous two-phase systems. Biotechnology Letters, 2003, 25, 651-655.                                                                                                                                                                              | 2.2 | 9         |
| 95  | Black Aspergillus species as ochratoxin A producers in Portuguese wine grapes. International Journal of Food Microbiology, 2003, 88, 63-68.                                                                                                                                                                                                           | 4.7 | 189       |
| 96  | Aqueous two-phase extraction using thermoseparating polymer: a new system for the separation of endo-polygalacturonase. Biochemical Engineering Journal, 2003, 15, 131-138.                                                                                                                                                                           | 3.6 | 43        |
| 97  | Use of Ozone To Reduce Molds in a Cheese Ripening Room. Journal of Food Protection, 2003, 66, 2355-2358.                                                                                                                                                                                                                                              | 1.7 | 57        |
| 98  | Biodegradation of Ochratoxin A by Fungi Isolated from Grapes. Journal of Agricultural and Food<br>Chemistry, 2002, 50, 7493-7496.                                                                                                                                                                                                                     | 5.2 | 136       |
| 99  | The effect of culture preservation techniques on patulin and citrinin production by Penicillium expansum Link. Letters in Applied Microbiology, 2002, 35, 272-275.                                                                                                                                                                                    | 2.2 | 39        |
| 100 | Mycotoxin production from fungi isolated from grapes. Letters in Applied Microbiology, 2001, 32, 240-242.                                                                                                                                                                                                                                             | 2.2 | 126       |
| 101 | Separation of endo-polygalacturonase using aqueous two-phase partitioning. Journal of Chromatography A, 2001, 929, 23-29.                                                                                                                                                                                                                             | 3.7 | 20        |
| 102 | Title is missing!. Biotechnology Letters, 2001, 23, 1893-1897.                                                                                                                                                                                                                                                                                        | 2.2 | 30        |
| 103 | Recovery of endo-polygalacturonase using polyethylene glycol-salt aqueous two-phase extraction with polymer recycling. Bioseparation, 2000, 9, 247-254.                                                                                                                                                                                               | 0.7 | 14        |
| 104 | Transformation of a flocculatingSaccharomyces cerevisiae using lithium acetate and pYAC4. Journal of Basic Microbiology, 1999, 39, 37-41.                                                                                                                                                                                                             | 3.3 | 6         |
| 105 | Cutinase purification on poly(ethylene glycol)–hydroxypropyl starch aqueous two-phase systems.<br>Biomedical Applications, 1998, 711, 151-159.                                                                                                                                                                                                        | 1.7 | 30        |
| 106 | Characterization of sugar diffusion coefficients in alginate membranes. Biotechnology Letters, 1997,<br>11, 183-186.                                                                                                                                                                                                                                  | 0.5 | 29        |
| 107 | Enzyme purification with aqueous two-phase systems: comparison between systems composed of pure polymers and systems composed of crude polymers. Biomedical Applications, 1996, 680, 131-136.                                                                                                                                                         | 1.7 | 20        |
| 108 | Protein mass transfer studies on a spray column using the PEG-Reppal PES 100 aqueous two-phase system. Bioprocess and Biosystems Engineering, 1995, 13, 251-255.                                                                                                                                                                                      | 0.5 | 12        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Model identification and diffusion coefficients determination of glucose and malic acid in calcium<br>alginate membranes. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1994,<br>56, B9-B14. | 0.1 | 11        |
| 110 | Evaluation of crude hydroxypropyl starch as a bioseparation aqueous-phase-forming polymer.<br>Biotechnology Progress, 1993, 9, 635-639.                                                                                  | 2.6 | 20        |