
Matthew Sprague

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2741152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lodine Content of Wild and Farmed Seafood and Its Estimated Contribution to UK Dietary Iodine Intake. Nutrients, 2022, 14, 195.	1.7	9
2	Oil from transgenic Camelina sativa as a source of EPA and DHA in feed for European sea bass (Dicentrarchus labrax L.). Aquaculture, 2021, 530, 735759.	1.7	28
3	Nutritional Characterisation of European Aquaculture Processing By-Products to Facilitate Strategic Utilisation. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	24
4	Export-Driven, Extensive Coastal Aquaculture Can Benefit Nutritionally Vulnerable People. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	12
5	Can mesopelagic mixed layers be used as feed sources for salmon aquaculture?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 180, 104722.	0.6	23
6	Variation in the nutritional composition of farmed Atlantic salmon (Salmo salar L.) fillets with emphasis on EPA and DHA contents. Journal of Food Composition and Analysis, 2020, 94, 103618.	1.9	25
7	Central and peripheral clocks in Atlantic bluefin tuna (Thunnus thynnus, L.): Daily rhythmicity of hepatic lipid metabolism and digestive genes. Aquaculture, 2020, 523, 735220.	1.7	12
8	European lobsters utilise Atlantic salmon wastes in coastal integrated multi-trophic aquaculture systems. Aquaculture Environment Interactions, 2020, 12, 485-494.	0.7	13
9	Endogenous production of <i>n</i> -3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the <i>α</i> -linolenic:linoleic ratio in Atlantic salmon (<i>Salmo salar</i>). British Journal of Nutrition, 2019, 122, 1091-1102.	1.2	16
10	Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients, 2019, 11, 89.	1.7	351
11	Oil from transgenic <i>Camelina sativa</i> containing over 25 % <i>n</i> -3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (<i>Salmo salar</i>). British Journal of Nutrition, 2018, 119, 1378-1392.	1.2	49
12	Encapsulated Fish Oil Products Available in the UK Meet Regulatory Guidelines With Respect to EPA + DHA Contents and Oxidative Status. European Journal of Lipid Science and Technology, 2018, 12 1800105.	0,1.0	12
13	The potential impact of compositional changes in farmed fish on its health-giving properties: is it time to reconsider current dietary recommendations?. Public Health Nutrition, 2017, 20, 2042-2049.	1.1	42
14	Nutritional evaluation of seafood, with respect to long-chain omega-3 fatty acids, available to UK consumers. Proceedings of the Nutrition Society, 2017, 76, .	0.4	11
15	Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnology Letters, 2017, 39, 1599-1609.	1.1	129
16	An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): Effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry. PLoS ONE, 2017, 12, e0175415.	1.1	66
17	Replacement of Marine Fish Oil with <i>de novo</i> Omegaâ€3 Oils from Transgenic <i>Camelina sativa</i> in Feeds for Gilthead Sea Bream (<i>Sparus aurata</i> L.). Lipids, 2016, 51, 1171-1191.	0.7	89
18	Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Scientific Reports. 2016. 6. 21892.	1.6	331

MATTHEW SPRAGUE

#	Article	IF	CITATIONS
19	Evaluation of barley protein concentrate and fish protein concentrate, made from trimmings, as sustainable ingredients in Atlantic salmon (<i>Salmo salar</i> L.) feeds. Aquaculture Nutrition, 2016, 22, 326-334.	1.1	5
20	Nutritional Evaluation of an EPA-DHA Oil from Transgenic Camelina sativa in Feeds for Post-Smolt Atlantic Salmon (Salmo salar L.). PLoS ONE, 2016, 11, e0159934.	1.1	66
21	A nutritionally-enhanced oil from transgenic Camelina sativa effectively replaces fish oil as a source of eicosapentaenoic acid for fish. Scientific Reports, 2015, 5, 8104.	1.6	124
22	Replacement of fish oil with a DHA-rich algal meal derived from Schizochytrium sp. on the fatty acid and persistent organic pollutant levels in diets and flesh of Atlantic salmon (Salmo salar, L.) post-smolts. Food Chemistry, 2015, 185, 413-421.	4.2	98
23	Roles of selenoprotein antioxidant protection in zebrafish, Danio rerio, subjected to dietary oxidative stress. Fish Physiology and Biochemistry, 2015, 41, 705-720.	0.9	19
24	Evaluation of a high-EPA oil from transgenic Camelina sativa in feeds for Atlantic salmon (Salmo salar) Tj ETQq0 C 1-12.) 0 rgBT /C 1.7	verlock 10 T 128
25	Complete replacement of fish oil with a blend of vegetable oils affects dioxin, dioxin-like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 3 Atlantic salmon (Salmo salar) families differing in flesh adiposity. Aquaculture, 2012, 324-325, 118-126.	1.7	22
26	Lipid and fatty acid composition, and persistent organic pollutant levels in tissues of migrating Atlantic bluefin tuna (Thunnus thynnus, L.) broodstock. Environmental Pollution, 2012, 171, 61-71.	3.7	48
27	The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacultural Engineering, 2011, 44, 35-47.	1.4	24
28	Effects of decontaminated fish oil or a fish and vegetable oil blend on persistent organic pollutant and fatty acid compositions in diet and flesh of Atlantic salmon (<i>Salmo salar</i>). British Journal of Nutrition, 2010, 103, 1442-1451.	1.2	39