
David E Heppner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740793/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Design of a "Two-in-One―Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. Journal of Medicinal Chemistry, 2022, 65, 1370-1383.	6.4	13
2	Quinazolinones as allosteric fourth-generation EGFR inhibitors for the treatment of NSCLC. Bioorganic and Medicinal Chemistry Letters, 2022, 68, 128718.	2.2	7
3	Architecture of the NADPH oxidase family of enzymes. Redox Biology, 2022, 52, 102298.	9.0	27
4	An allosteric inhibitor against the therapy-resistant mutant forms of EGFR in non-small cell lung cancer. Nature Cancer, 2022, 3, 402-417.	13.2	65
5	Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors. Nature Communications, 2022, 13, 2530.	12.8	29
6	A structural perspective on targeting the <scp>RTK</scp> /Ras/ <scp>MAP</scp> kinase pathway in cancer. Protein Science, 2021, 30, 1535-1553.	7.6	17
7	Structural insights into redox-active cysteine residues of the Src family kinases. Redox Biology, 2021, 41, 101934.	9.0	15
8	Oxidation–Dependent Activation of Src Kinase Mediates Epithelial IL-33 Production and Signaling during Acute Airway Allergen Challenge. Journal of Immunology, 2021, 206, 2989-2999.	0.8	7
9	Redox regulation of tyrosine kinase signalling: more than meets the eye. Journal of Biochemistry, 2020, 167, 151-163.	1.7	42
10	Redox regulation of protein kinase signaling. , 2020, , 287-313.		1
11	Structural Basis for EGFR Mutant Inhibition by Trisubstituted Imidazole Inhibitors. Journal of Medicinal Chemistry, 2020, 63, 4293-4305.	6.4	33
12	A Quantitative Tissue-Specific Landscape of Protein Redox Regulation during Aging. Cell, 2020, 180, 968-983.e24.	28.9	220
13	Rapid Decay of the Native Intermediate in the Metallooxidase Fet3p Enables Controlled Fe ^{II} Oxidation for Efficient Metabolism. Journal of the American Chemical Society, 2020, 142, 10087-10101.	13.7	8
14	Discovery and Optimization of Dibenzodiazepinones as Allosteric Mutant-Selective EGFR Inhibitors. ACS Medicinal Chemistry Letters, 2019, 10, 1549-1553.	2.8	47
15	A driving test for oncogenic mutations. Journal of Biological Chemistry, 2019, 294, 9390-9391.	3.4	0
16	Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discovery, 2019, 9, 926-943.	9.4	220
17	Dysregulated Redox Regulation Contributes to Nuclear EGFR Localization and Pathogenicity in Lung Cancer. Scientific Reports, 2019, 9, 4844.	3.3	16
18	Lung epithelial protein disulfide isomerase A3 (PDIA3) plays an important role in influenza infection, inflammation, and airway mechanics. Redox Biology, 2019, 22, 101129.	9.0	42

DAVID E HEPPNER

#	Article	IF	CITATIONS
19	Dual oxidase: a novel therapeutic target in allergic disease. British Journal of Pharmacology, 2018, 175, 1401-1418.	5.4	48
20	Cysteine perthiosulfenic acid (Cys-SSOH): A novel intermediate in thiol-based redox signaling?. Redox Biology, 2018, 14, 379-385.	9.0	56
21	Direct cysteine sulfenylation drives activation of the Src kinase. Nature Communications, 2018, 9, 4522.	12.8	87
22	The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies. Archives of Biochemistry and Biophysics, 2017, 616, 40-46.	3.0	43
23	Paradoxical roles of dual oxidases in cancer biology. Free Radical Biology and Medicine, 2017, 110, 117-132.	2.9	34
24	Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L913-L923.	2.9	19
25	The NADPH Oxidases DUOX1 and NOX2 Play Distinct Roles in Redox Regulation of Epidermal Growth Factor Receptor Signaling. Journal of Biological Chemistry, 2016, 291, 23282-23293.	3.4	49
26	Redox-dependent regulation of epidermal growth factor receptor signaling. Redox Biology, 2016, 8, 24-27.	9.0	74
27	Abstract 1681: DUOX1 expression in lung cancer disrupts pro-oncogenic activation mechanisms and localization of Src and EGFR. , 2016, , .		1
28	DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight, 2016, 1, e88811.	5.0	58
29	A Role for DUOX1 and NOX2 in the Redox Regulation of EGFR Signaling in the Airway Epithelium. Free Radical Biology and Medicine, 2015, 87, S101-S102.	2.9	0
30	Mechanism of the Reduction of the Native Intermediate in the Multicopper Oxidases: Insights into Rapid Intramolecular Electron Transfer in Turnover. Journal of the American Chemical Society, 2014, 136, 17788-17801.	13.7	42
31	Copper Active Sites in Biology. Chemical Reviews, 2014, 114, 3659-3853.	47.7	1,305
32	Molecular Origin of Rapid versus Slow Intramolecular Electron Transfer in the Catalytic Cycle of the Multicopper Oxidases. Journal of the American Chemical Society, 2013, 135, 12212-12215.	13.7	41
33	Copper dioxygen (bio)inorganic chemistry. Faraday Discussions, 2011, 148, 11-39.	3.2	156
34	Reaction Coordinate of a Functional Model of Tyrosinase: Spectroscopic and Computational Characterization. Journal of the American Chemical Society, 2009, 131, 6421-6438.	13.7	100
35	Validation of density functional modeling protocols on experimental bis(μ-oxo)/μ-η2:η2-peroxo dicopper equilibria. Journal of Biological Inorganic Chemistry, 2007, 12, 1221-1234.	2.6	35
36	Can an ancillary ligand lead to a thermodynamically stable end-on 1 : 1 Cu–O2adduct supported by a β-diketiminate ligand?. Dalton Transactions, 2006, , 4773-4782.	3.3	12

#	Article	IF	CITATIONS
37	Models for dioxygen activation by the CuB site of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase. Journal of Biological Inorganic Chemistry, 2006, 11, 197-205.	2.6	44