Kazuhiro Nogita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomic insights into the ordered solid solutions of Ni and Au in ÎCu6Sn5. Acta Materialia, 2022, 224, 117513.	3.8	3
2	Investigation on the Solidification and Phase Transformation in Pb-Free Solders Using In Situ Synchrotron Radiography and Diffraction: A Review. Acta Metallurgica Sinica (English Letters), 2022, 35, 49-66.	1.5	2
3	The effect of Ni on the growth morphology of primary β-phase in an In-35Âwt%Sn alloy. Journal of Alloys and Compounds, 2022, 897, 163172.	2.8	7
4	In Situ Observation of Liquid Solder Alloys and Solid Substrate Reactions Using High-Voltage Transmission Electron Microscopy. Materials, 2022, 15, 510.	1.3	3
5	The Effects of Temperature and Solute Diffusion on Volume Change in Sn-Bi Solder Alloys. Jom, 2022, 74, 1739-1750.	0.9	8
6	Systematic investigation of the effect of Ni concentration in Cu-xNi/Sn couples for high temperature soldering. Acta Materialia, 2022, 226, 117661.	3.8	14
7	Controlling the distribution of porosity during transient liquid phase bonding of Sn-based solder joint. Materials Today Communications, 2022, 31, 103248.	0.9	1
8	Properties of Sn-3Âwt%Ag-5Âwt%Cu alloys with Cu6Sn5 intermetallics grain refined by Mg. Materials Today Communications, 2022, 31, 103221.	0.9	6
9	Liquid/Solid Interaction of Sn-58Bi/Sn-3.0Ag-0.5Cu Dissimilar Joints during Soldering at Low Temperature by In-Situ Synchrotron Imaging. Jom, 2022, 74, 2760-2769.	0.9	2
10	Hydrogen sorption behaviour of Mg-5wt.%La alloys after the initial hydrogen absorption process. International Journal of Hydrogen Energy, 2022, 47, 16132-16143.	3.8	7
11	Effect of Kaolin Geopolymer Ceramics Addition on the Microstructure and Shear Strength of Sn-3.0Ag-0.5Cu Solder Joints during Multiple Reflow. Materials, 2022, 15, 2758.	1.3	3
12	Na-modified cast hypo-eutectic Mg–Mg2Si alloys for solid-state hydrogen storage. Journal of Power Sources, 2022, 538, 231538.	4.0	10
13	Investigation of the Effects of Surface Finish and Reflow Conditions on the Microstructure and Mechanical Properties of Sn-based Solders. , 2022, , .		Ο
14	Comparison of the Mechanical Properties of Conventional Pb-free Solders and Eutectic Sn-Bi Solder. , 2022, , .		2
15	Maximum Fluidity Length of Commercial Solder Alloys and the Effects of Ni and Co in Sn-0.7wt%Cu Solder Alloys. , 2022, , .		Ο
16	Origin of Primary Cu6Sn5 in Hypoeutectic Solder Alloys and a Method of Suppression to Improve Mechanical Properties. Journal of Electronic Materials, 2021, 50, 710-722.	1.0	9
17	Effect of Ni, Zn, Au, Sb and In on the Suppression of the Cu3Sn Phase in Sn-10Âwt.%Cu Alloys. Journal of Electronic Materials, 2021, 50, 881-892.	1.0	4
18	Evaluation of wave-like nucleation events in Al-4%Si alloys with addition of TiB ₂ particles by time-resolved and in-situ observation. Keikinzoku/Journal of Japan Institute of Light Metals, 2021, 71, 22-29.	0.1	0

#	Article	IF	CITATIONS
19	Effects of Surface Finish on Sn-3.0Ag-0.5Cu Solder Joint Microstructure and Strength. Journal of Electronic Materials, 2021, 50, 855-868.	1.0	7
20	Microstructure Evolution of Ag/TiO2 Thin Film. Magnetochemistry, 2021, 7, 14.	1.0	2
21	In-situ observation of high-temperature Pb-free electric interconnections by synchrotron microradiography. Materials Letters, 2021, 291, 129520.	1.3	3
22	Microstructure, thermal behavior and joint strength of Sn-0.7Cu-1.5Bi/electroless nickel immersion gold (ENIG). Journal of Materials Research and Technology, 2021, 12, 1700-1714.	2.6	8
23	Interfacial reactions between Ga and Cu-xNi (x=0, 2, 6, 10, 14) substrates and the strength of Cu-xNi/Ga/Cu-xNi joints. Intermetallics, 2021, 133, 107168.	1.8	6
24	Rapid fabrication of tin-copper anodes for lithium-ion battery applications. Journal of Alloys and Compounds, 2021, 867, 159031.	2.8	9
25	The effect of Na addition on the first hydrogen absorption kinetics of cast hypoeutectic Mg–La alloys. International Journal of Hydrogen Energy, 2021, 46, 27096-27106.	3.8	10
26	Re-evaluation of the mechanical properties and creep resistance of commercial magnesium die-casting alloy AE44. Journal of Magnesium and Alloys, 2021, 9, 1537-1545.	5.5	16
27	Peritectic phase formation kinetics of directionally solidifying Sn-Cu alloys within a broad growth rate regime. Acta Materialia, 2021, 220, 117295.	3.8	13
28	The Effect of Ni and Bi Additions on the Solderability of Sn-0.7Cu Solder Coatings. Journal of Electronic Materials, 2020, 49, 1-12.	1.0	23
29	Properties of CuGa2 Formed Between Liquid Ga and Cu Substrates at Room Temperature. Journal of Electronic Materials, 2020, 49, 128-139.	1.0	29
30	The effect of Bi on the microstructure, electrical, wettability and mechanical properties of Sn-0.7Cu-0.05Ni alloys for high strength soldering. Materials and Design, 2020, 186, 108281.	3.3	35
31	Evidence of Copper Separation in Lithiated Cu ₆ Sn ₅ Lithium-Ion Battery Anodes. ACS Applied Energy Materials, 2020, 3, 141-145.	2.5	14
32	Direct observation of the Ni stabilising effect in interfacial (Cu,Ni)6Sn5 intermetallic compounds. Materialia, 2020, 9, 100530.	1.3	8
33	Electrochemically enhanced Cu6Sn5 anodes with tailored crystal orientation and ordered atomic arrangements for lithium-ion battery applications. Acta Materialia, 2020, 201, 341-349.	3.8	5
34	On the distribution of the trace elements V and Cr in an Al–Zn–Si alloy coating on a steel substrate. Materialia, 2020, 11, 100669.	1.3	2
35	A rational interpretation of solidification microstructures in the Mg-rich corner of the Mg–Al–La system. Journal of Alloys and Compounds, 2020, 844, 156068.	2.8	4
36	Effect of Na and Cooling Rate on the Activation of Mg–Ni Alloys for Hydrogen Storage. Journal of Nanoscience and Nanotechnology, 2020, 20, 5192-5200.	0.9	4

#	Article	IF	CITATIONS
37	Microstructure and growth kinetic study in Sn–Cu transient liquid phase sintering solder paste. Journal of Materials Science: Materials in Electronics, 2020, 31, 11077-11094.	1.1	7
38	Reducing Cracking in Solder Joint Interfacial Cu ₆ Sn ₅ with Modified Reflow Profile. Transactions of the Japan Institute of Electronics Packaging, 2020, 13, E19-004-1-E19-004-11.	0.3	4
39	Intermetallic formation mechanisms and properties in room-temperature Ga soldering. Journal of Alloys and Compounds, 2020, 826, 154221.	2.8	17
40	Interfacial Reactions between Ga and Cu-10Ni Substrate at Low Temperature. ACS Applied Materials & amp; Interfaces, 2020, 12, 21045-21056. In the stabilization of combinate	4.0	19
41	xmins:mml= http://www.w3.org/1998/Math/Math/Math/ML > <mml:mrow> <mml:mi>i</mml:mi> <mml:mtext>a `mathvariant="normal">C <mml:msub> <mml:mi mathvariant="normal">u <mml:mn>6</mml:mn> </mml:mi </mml:msub> <mml:mi mathvariant="normal">S <mml:msub> <mml:mi< td=""><td>nl:mtext>< 0.9</td><td>mml:mi 7</td></mml:mi<></mml:msub></mml:mi </mml:mtext></mml:mrow>	nl:mtext>< 0.9	mml:mi 7
42	The Effects of Trace Sb and Zn Additions on Cu6Sn5 Lithium-Ion Battery Anodes. Journal of Nanoscience and Nanotechnology, 2020, 20, 5182-5191.	0.9	3
43	Atom locations in a Ni doped Î(Cu,Ni)6Sn5 intermetallic compound. Scripta Materialia, 2019, 158, 1-5.	2.6	22
44	Effects of Ni and Cu Antisite Substitution on the Phase Stability of CuGa2 from Liquid Ga/Cu–Ni Interfacial Reaction. ACS Applied Materials & Interfaces, 2019, 11, 32523-32532.	4.0	10
45	The effects of Ni on inhibiting the separation of Cu during the lithiation of Cu6Sn5 lithium-ion battery anodes. Journal of Power Sources, 2019, 440, 227085.	4.0	12
46	Inhibition of cracking in Cu6Sn5 intermetallic compounds at the interface of lead-free solder joint by controlling the reflow cooling conditions. , 2019, , .		1
47	Role of Bi, Sb and In in microstructure formation and properties of Sn-0.7Cu-0.05Ni-X BGA interconnections. , 2019, , .		2
48	Characterisation of lithium-ion battery anodes fabricated via in-situ Cu6Sn5 growth on a copper current collector. Journal of Power Sources, 2019, 415, 50-61.	4.0	34
49	Experimental Determination of the Sn-Cu-Ni Phase Diagram for Pb-Free Solder Applications. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 502-516.	1.0	12
50	Al8Mn5 Particle Settling and Interactions with Oxide Films in Liquid AZ91 Magnesium Alloys. Jom, 2019, 71, 2235-2244.	0.9	20
51	In situ studies revealing dendrite and eutectic growth during the solidification of Sn-0.7Cu-0.5Ag Pb-free solder alloy. Journal of Alloys and Compounds, 2019, 797, 804-810.	2.8	16
52	Temperature dependency of the growth rate of (Cu,Ni)6Sn5 on Cu-xNi substrates. IOP Conference Series: Materials Science and Engineering, 2019, 701, 012007.	0.3	3
53	Effect of Zn addition on Cu3Sn formation in Sn-10Cu alloys. IOP Conference Series: Materials Science and Engineering, 2019, 701, 012009.	0.3	3
54	Influence of cooling conditions on the interfacial Cu6Sn5 intermetallic compound in Sn-37Pb/Cu solder joints during reflow. IOP Conference Series: Materials Science and Engineering, 2019, 701, 012006.	0.3	0

#	Article	IF	CITATIONS
55	Interfacial reactions between different Sn-based lead- free solder alloys and CuNi substrates. IOP Conference Series: Materials Science and Engineering, 2019, 701, 012008.	0.3	1
56	Solidification path and microstructure evolution of Mg-3Al-14La alloy: Implications for the Mg-rich corner of the Mg-Al-La phase diagram. Journal of Alloys and Compounds, 2019, 784, 527-534.	2.8	7
57	Relationship between free solder thickness to the solderability of Sn–0.7Cu–0.05Ni solder coating during soldering. Journal of Materials Science: Materials in Electronics, 2019, 30, 3669-3677.	1.1	14
58	Characterising the polymorphic phase transformation at a localised point on a Cu6Sn5 grain. Materials Characterization, 2018, 138, 113-119.	1.9	37
59	Influence of Bi Addition on Wettability and Mechanical Properties of Sn-0.7Cu Solder Alloy. Solid State Phenomena, 2018, 273, 27-33.	0.3	12
60	The effects of precipitation strengthening and solid solution strengthening on strain rate sensitivity of lead-free solders: Review. Microelectronics Reliability, 2018, 84, 170-180.	0.9	25
61	PM-26Atomic insights into the Ni-stabilized hexagonal Î(Cu,Ni)6Sn5 intermetallic compound. Microscopy (Oxford, England), 2018, 67, i48-i48.	0.7	Ο
62	Imaging the Polymorphic Transformation in a Single Cu6Sn5 Grain in a Solder Joint. Materials, 2018, 11, 2229.	1.3	15
63	STEM Analysis of Atom Location in (Cu, Au, Ni) ₆ Sn ₅ Intermetallic Compounds. Solid State Phenomena, 2018, 273, 95-100.	0.3	0
64	Influence of Ni on the refinement and twinning of primary Cu6Sn5 in Sn-0.7Cu-0.05Ni. Intermetallics, 2018, 102, 34-45.	1.8	27
65	Suppression of Cu3Sn in the Sn-10Cu peritectic alloy by the addition of Ni. Journal of Alloys and Compounds, 2018, 766, 1003-1013.	2.8	19
66	Effect of Trace Phosphorus on the Dross Formation in Tin-Copper-Nickel Wave Solder. Solid State Phenomena, 2018, 273, 9-13.	0.3	2
67	Effect of reflow conditions on the intermetallic layer in solder joints. , 2018, , .		3
68	Optimization of Ni and Bi levels in Sn-0.7Cu-xNi-yBi solders for improved interconnection reliability. , 2018, , .		4
69	Synchrotron Radiography of Sn-0.7Cu-0.05Ni Solder Solidification. Solid State Phenomena, 2018, 273, 66-71.	0.3	2
70	Ga-Based Alloys in Microelectronic Interconnects: A Review. Materials, 2018, 11, 1384.	1.3	77
71	In situ imaging of microstructure formation in electronic interconnections. Scientific Reports, 2017, 7, 40010.	1.6	43
72	Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections. Acta Materialia, 2017, 126, 540-551.	3.8	81

#	Article	IF	CITATIONS
73	Reply to â€~Comments on "Evidence of the hydrogen release mechanism in bulk MgH2â€â€™. Scientific Reports, 2017, 7, 43720.	1.6	Ο
74	Real time X-ray imaging of soldering processes at the SPring-8 synchrotron. , 2017, , .		0
75	Effects of Bi in Sn-Cu based lead-free solder alloys and interconnects. , 2017, , .		7
76	Effect of trace Na additions on the hydriding kinetics of hypo-eutectic Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, 42, 6851-6861.	3.8	10
77	In-situ investigation of the hydrogen release mechanism in bulk Mg2NiH4. Journal of Power Sources, 2017, 341, 130-138.	4.0	55
78	Anisotropic thermal expansion of Ni 3 Sn 4 , Ag 3 Sn, Cu 3 Sn, Cu 6 Sn 5 and βSn. Intermetallics, 2017, 91, 50-64.	1.8	57
79	Effect of impurity N2 concentration on the hydriding kinetics of Na-doped Mg–Ni alloys. International Journal of Hydrogen Energy, 2017, 42, 366-375.	3.8	2
80	Effects of Ni and TiO2 additions in as-reflowed and annealed Sn0.7Cu solders on Cu substrates. Journal of Materials Processing Technology, 2017, 242, 235-245.	3.1	54
81	Effects of Bismuth in Sn-Cu Based Solder Alloys and Interconnects. Transactions of the Japan Institute of Electronics Packaging, 2017, 10, E17-003-1-E17-003-7.	0.3	1
82	Real-Time Observation of AZ91 Solidification by Synchrotron Radiography. Minerals, Metals and Materials Series, 2017, , 597-603.	0.3	2
83	Suppression of Cu 6 Sn 5 in TiO 2 reinforced solder joints after multiple reflow cycles. Materials and Design, 2016, 108, 418-428.	3.3	57
84	Effects of Trace Phosphorus in Sn-Cu-Ni Wave Solder Dross. Materials Science Forum, 2016, 857, 49-52.	0.3	4
85	Effect of trace Na additions on the hydrogen absorption kinetics of Mg ₂ Ni. Journal of Materials Research, 2016, 31, 1316-1327.	1.2	17
86	In Situ TEM Observations of Cu6Sn5 Polymorphic Transformations in Reaction Layers Between Sn-0.7Cu Solders and Cu Substrates. Jom, 2016, 68, 2871-2878.	0.9	23
87	Suppression of Cu ₃ Sn with Ni in High Cu Containing Sn-Cu Solder Alloys. Materials Science Forum, 2016, 857, 53-57.	0.3	3
88	The influence of ageing on the stabilisation of interfacial (Cu,Ni)6(Sn,Zn)5 and (Cu,Au,Ni)6Sn5 intermetallics in Pb-free Ball Grid Array (BGA) solder joints. Journal of Alloys and Compounds, 2016, 685, 471-482.	2.8	37
89	Influence of Bi additions on the distinct βSn grain structure of Sn-0.7Cu-0.05Ni-xBi (x = 0–4wt%). , 2016, , .		3
90	Effect of Ni on the Formation and Growth of Primary Cu6Sn5 Intermetallics in Sn-0.7Âwt.%Cu Solder Pastes on Cu Substrates During the Soldering Process. Journal of Electronic Materials, 2016, 45, 154-163.	1.0	51

#	Article	IF	CITATIONS
91	Critical properties of Cu 6 Sn 5 in electronic devices: Recent progress and a review. Current Opinion in Solid State and Materials Science, 2016, 20, 55-76.	5.6	87
92	Understanding the Origin of Li ₂ MnO ₃ Activation in Liâ€Rich Cathode Materials for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 7488-7496.	7.8	151
93	Real-time synchrotron x-ray observations of equiaxed solidification of aluminium alloys and implications for modelling. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012014.	0.3	16
94	<i>In Situ</i> Soldering Process Technique by Synchrotron X-Ray Imaging. Applied Mechanics and Materials, 2015, 754-755, 508-512.	0.2	3
95	Evidence of the hydrogen release mechanism in bulk MgH2. Scientific Reports, 2015, 5, 8450.	1.6	66
96	Electrochemical and Structural Study of Layered P2â€Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as Cathode Material for Sodiumâ€Ion Battery. Chemistry - an Asian Journal, 2015, 10, 661-666.	1.7	88
97	Development of a microwave sintered TiO2 reinforced Sn–0.7wt%Cu–0.05wt%Ni alloy. Materials and Design, 2015, 82, 136-147.	3.3	43
98	Metallic tin recovery from wave solder dross. International Journal of Mineral Processing, 2015, 137, 98-105.	2.6	9
99	In-situ synchrotron X-ray diffraction investigation of the hydriding and dehydriding properties of a cast Mg–Ni alloy. Journal of Alloys and Compounds, 2015, 636, 249-256.	2.8	23
100	A real-time synchrotron X-ray study of primary phase nucleation and formation in hypoeutectic Al–Si alloys. Journal of Crystal Growth, 2015, 430, 122-137.	0.7	45
101	Kinetics of the β → α Transformation of Tin: Role of α-Tin Nucleation. Crystal Growth and Design, 2015, 15, 5767-5773.	1.4	12
102	The beneficial effect of Zn additions on the microstructure of SnCu and SnCuNi solder joints to Cu substrates. , 2015, , .		2
103	Rapid Cu6Sn5 growth at liquid Sn/solid Cu interfaces. Scripta Materialia, 2015, 100, 17-20.	2.6	56
104	The influence of Ni and Zn additions on microstructure and phase transformations in Sn–0.7Cu/Cu solder joints. Acta Materialia, 2015, 83, 357-371.	3.8	119
105	Tin pest in lead-free solders? Fundamental studies on the effect of impurities on phase transformation kinetics. , 2014, , .		8
106	Effects of element addition on the β→α transformation in tin. Philosophical Magazine Letters, 2014, 94, 53-62.	0.5	12
107	Lead-free solders for solar and electric vehicles - Reflections on The Bridgestone World Solar Challenge 2013 in "Arrow1". , 2014, , .		0
108	Solidification of Sn-0.7Cu-0.15Zn Solder: In Situ Observation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 918-926.	1.1	23

#	Article	IF	CITATIONS
109	Kinetics of the polymorphic phase transformation of Cu6Sn5. Acta Materialia, 2014, 69, 135-148.	3.8	48
110	Ni segregation in the interfacial (Cu,Ni)6Sn5 intermetallic layer of Sn-0.7Cu-0.05Ni/Cu ball grid array (BCA) joints. Intermetallics, 2014, 54, 20-27.	1.8	24
111	Comparison of solidification behavior between in situ observation and simulation of Fe–C–Si system. Journal of Alloys and Compounds, 2014, 613, 132-138.	2.8	8
112	Hydrogen desorption of Mg–Mg2Ni hypo-eutectic alloys in air, Ar, CO2, N2 and H2. Journal of Alloys and Compounds, 2013, 580, S140-S143.	2.8	7
113	Real time synchrotron X-ray observations of solidification in hypoeutectic Al–Si alloys. Materials Characterization, 2013, 85, 134-140.	1.9	34
114	Investigating the mechanical properties, creep and crack pattern of Cu6Sn5 and (Cu,Ni)6Sn5 on diverse crystal planes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 566, 126-133.	2.6	35
115	Determination of the minimum Ni concentration to prevent the η to η4+1 polymorphic transformation of stoichiometric Cu6Sn5. Scripta Materialia, 2013, 68, 595-598.	2.6	26
116	Phase stability and thermal expansion behavior of Cu6Sn5 intermetallics doped with Zn, Au and In. Intermetallics, 2013, 43, 85-98.	1.8	41
117	Influence of Composition on the Morphology of Primary Cu6Sn5 in Sn-4Cu Alloys. Journal of Electronic Materials, 2013, 42, 256-262.	1.0	29
118	Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures. Journal of Electronic Materials, 2013, 42, 304-311.	1.0	28
119	XRD study of the kinetics of β ↔ α transformations in tin. Philosophical Magazine, 2013, 93, 3627-364	ł <i>7</i> 0.7	27
120	Real Time Synchrotron X-Ray Imaging for Nucleation and Growth of Cu ₆ Sn ₅ in Sn-7Cu-0.05Ni High Temperature Lead-Free Solder Alloys. Advanced Materials Research, 2012, 626, 200-204.	0.3	6
121	Effect of Zn, Au, and In on the polymorphic phase transformation in Cu ₆ Sn ₅ intermetallics. Journal of Materials Research, 2012, 27, 2609-2614.	1.2	21
122	A new phase in stoichiometric Cu6Sn5. Acta Materialia, 2012, 60, 6581-6591.	3.8	50
123	Anisotropic mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5. Materials Letters, 2012, 86, 46-49.	1.3	67
124	Development of high-temperature solders: Review. Microelectronics Reliability, 2012, 52, 1306-1322.	0.9	248
125	Effect of Ni on phase stability and thermal expansion of Cu6â^'xNixSn5 (XÂ=Â0, 0.5, 1, 1.5 and 2). Intermetallics, 2012, 26, 78-85.	1.8	65
126	Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu. Journal of Alloys and Compounds, 2012, 536, 38-46.	2.8	56

Kazuhiro Nogita

#	Article	IF	CITATIONS
127	放射å‰ã,'å^©ç"¨ã⊷ãŸã,¢ãƒ«ãƒŸãƒ<ã,¦ãƒå•é‡ʿã®å‡å›°ç¾è±¡ã®è§£æ~Ž. Keikinzoku/Journal of Japan Institut	e@afiLight	Mætals, 20
128	The influence of topological structure on bulk glass formation in Al-based metallic glasses. Scripta Materialia, 2011, 65, 755-758.	2.6	23
129	Kinetics of the η–η′ transformation in Cu6Sn5. Scripta Materialia, 2011, 65, 922-925.	2.6	68
130	Thermal expansion of Cu ₆ Sn ₅ and (Cu,Ni) ₆ Sn ₅ . Journal of Materials Research, 2011, 26, 2660-2664.	1.2	52
131	Granular deformation mechanisms in semi-solid alloys. Acta Materialia, 2011, 59, 4933-4943.	3.8	89
132	In situ investigation of unidirectional solidification in Sn–0.7Cu and Sn–0.7Cu–0.06Ni. Acta Materialia, 2011, 59, 4043-4054.	3.8	56
133	The influence of solder composition on the impact strength of lead-free solder ball grid array joints. Microelectronics Reliability, 2011, 51, 657-667.	0.9	47
134	Shear and tensile impact strength of lead-free solder ball grid arrays placed on Ni (P)/Au surface-finished substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171, 162-171.	1.7	33
135	Intermetallic Formation and Fluidity in Sn-Rich Sn-Cu-Ni Alloys. Journal of Electronic Materials, 2010, 39, 56-69.	1.0	46
136	The Performance of Lead-Free Solders During a Long-Distance Electric Vehicle Race. Transactions of the Japan Institute of Electronics Packaging, 2010, 3, 104-109.	0.3	5
137	Synchrotron Micro-XRF Measurements of Trace Element Distributions in BGA Type Solders and Solder Joints. Transactions of the Japan Institute of Electronics Packaging, 2010, 3, 40-46.	0.3	14
138	Formation and Mechanical Properties of Intermetallic Compounds in Sn-Cu High-Temperature Lead-Free Solder Joints. Materials Science Forum, 2010, 654-656, 2450-2454.	0.3	13
139	Nanoindentation Characterization of Intermetallics Formed at the Lead-Free Solder/Cu Substrate Interface. Materials Science Forum, 2010, 654-656, 2446-2449.	0.3	Ο
140	Characterisation of Hydrogen Release Behaviour in Cast Mg-Ni Alloys by Synchrotron XRD and XAFS. Materials Science Forum, 2010, 654-656, 2851-2854.	0.3	3
141	The influence of Ni additions on the relative stability of η and η′â€^Cu6Sn5. Applied Physics Letters, 2010, 96, .	1.5	54
142	Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys. Intermetallics, 2010, 18, 145-149.	1.8	156
143	The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. Journal of Alloys and Compounds, 2010, 489, 415-420.	2.8	132
144	Inhibiting Cracking of Interfacial Cu6Sn5 by Ni Additions to Sn-based Lead-free Solders. Transactions of the Japan Institute of Electronics Packaging, 2009, 2, 46-54.	0.3	39

#	Article	IF	CITATIONS
145	Effect of intermetallic stabilization on the impact resistance of joints to BGA packages. , 2009, , .		1
146	Mechanism of Improved Hydrogen Absorption Kinetics in Cast Mg-Ni Alloys. Materials Science Forum, 2009, 618-619, 391-394.	0.3	3
147	Epitaxial growth of Cu6Sn5 formed at Sn-based lead-free solder/non-textured polycrystalline Cu plate interface. Materials Letters, 2009, 63, 2687-2690.	1.3	27
148	Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates. Jom, 2009, 61, 45-51.	0.9	119
149	Nanoindentation characterization of intermetallic compounds formed between Sn–Cu (–Ni) ball grid arrays and Cu substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 164, 44-50.	1.7	38
150	Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys. International Journal of Hydrogen Energy, 2009, 34, 7686-7691.	3.8	61
151	The Maximum Fluidity Length of Solidifying Sn-Cu-Ag-Ni Solder Alloys. Journal of Electronic Materials, 2008, 37, 51-60.	1.0	39
152	The Influence of 0–0.1 wt.% Ni on the Microstructure and Fluidity Length of Sn-0.7Cu-xNi. Journal of Electronic Materials, 2008, 37, 32-39.	1.0	67
153	Nickel-stabilized hexagonal (Cu, Ni)6Sn5 in Sn–Cu–Ni lead-free solder alloys. Scripta Materialia, 2008, 59, 191-194.	2.6	173
154	Effects of boron on microstructure in cast titanium alloys. Scripta Materialia, 2008, 59, 538-541.	2.6	147
155	Effects of Phosphorus on Microstructure and Fluidity of Sn-0.7Cu-0.05Ni Lead-Free Solder. Materials Transactions, 2008, 49, 443-448.	0.4	24
156	Ultrahigh Electron Emissive Carbon Nanotubes with Nano-sized RuO2 Particles Deposition. Journal of Nanoparticle Research, 2007, 9, 1201-1204.	0.8	4
157	Eutectic grain size and strontium concentration in hypoeutectic aluminium–silicon alloys. Journal of Alloys and Compounds, 2006, 422, 184-191.	2.8	29
158	The Effect of Aluminium Content on the Mechanical Properties and Microstructure of Die Cast Binary Magnesium-Aluminium Alloys. Materials Transactions, 2006, 47, 977-982.	0.4	49
159	Analytical electron microscopy of proton exchange membrane fuel cells. Solid State Ionics, 2006, 177, 1649-1654.	1.3	3
160	Influence of calcium on the microstructure and properties of an Al-7Si-0.3Mg-xFe alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2581-2587.	1.1	20
161	A rheological assessment of the effect of trace level Ni additions on the solidification of Sn–0.7Cu. Scripta Materialia, 2006, 54, 1557-1562.	2.6	21
162	Determination of strontium segregation in modified hypoeutectic Al–Si alloy by micro X-ray fluorescence analysis. Scripta Materialia, 2006, 55, 787-790.	2.6	98

#	Article	IF	CITATIONS
163	Microstructure Control in Sn–0.7 mass%Cu Alloys. Materials Transactions, 2005, 46, 2419-2425.	0.4	43
164	Influence of microstructure of tungsten on solid state reaction rate with amorphous carbon film. Journal of Nuclear Materials, 2005, 337-339, 902-906.	1.3	2
165	Eutectic modification and microstructure development in Al–Si Alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 413-414, 243-248.	2.6	271
166	Combining Sr and Na additions in hypoeutectic Al–Si foundry alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 399, 244-253.	2.6	111
167	Crystallography of Zirconium Hydrides in Recrystallized Zircaloy-2 Fuel Cladding by Electron Backscatter Diffraction. Journal of Nuclear Science and Technology, 2004, 41, 731-740.	0.7	81
168	Aluminium phosphide as a eutectic grain nucleus in hypoeutectic Al-Si alloys. Journal of Electron Microscopy, 2004, 53, 361-369.	0.9	120
169	Microstructure and mechanical properties of high pressure die cast magnesium alloy AE42 with 1% strontium. International Journal of Cast Metals Research, 2004, 17, 170-173.	0.5	24
170	Eutectic solidification and its role in casting porosity formation. Jom, 2004, 56, 52-58.	0.9	37
171	Eutectic nucleation in Al–Si alloys. Acta Materialia, 2004, 52, 4273-4280.	3.8	202
172	Solidification mechanisms of unmodified and strontium-modified hypereutectic aluminium–silicon alloys. Philosophical Magazine, 2004, 84, 1683-1696.	0.7	29
173	äºœå±æ™¶Al–Siå•金ã«ãŠã'ã,‹æ°—泡形æˆãë屿™¶æ"¹è‰⁻機構. Keikinzoku/Journal of Japan Inst	itu tœ. ɒf Lig	ght 2 Metals, 20
174	Grain Size Measurements in Mg-Al High Pressure Die Castings Using Electron Back-Scattered Diffraction (EBSD). Materials Transactions, 2004, 45, 3114-3119.	0.4	20
175	Eutectic Modification of Al-Si Alloys with Rare Earth Metals. Materials Transactions, 2004, 45, 323-326.	0.4	178
176	Effects of boron on eutectic modification of hypoeutectic Al–Si alloys. Scripta Materialia, 2003, 48, 307-313.	2.6	62
177	Evaluation of Silicon Twinning in Hypo-Eutectic Al-Si Alloys. Materials Transactions, 2003, 44, 625-628.	0.4	51
178	Effects of Boron-strontium Interactions on Eutectic Modification in Al-10 mass%Si Alloys. Materials Transactions, 2003, 44, 692-695.	0.4	30
179	Columnar to equiaxed transition of eutectic in hypoeutectic aluminium–silicon alloys. Acta Materialia, 2002, 50, 2537-2546.	3.8	61
180	Eutectic solidification in hypoeutectic Al–Si alloys: electron backscatter diffraction analysis. Materials Characterization, 2001, 46, 305-310.	1.9	76

#	Article	IF	CITATIONS
181	Modification of Al–Si alloys with Ba, Ca, Y and Yb. Journal of Light Metals, 2001, 1, 229-240.	0.8	200
182	Mechanisms of eutectic solidification in Al–Si alloys modified with Ba, Ca, Y and Yb. Journal of Light Metals, 2001, 1, 219-228.	0.8	80
183	Porosity formation in aluminium alloy A356 modified with Ba, Ca, Y and Yb. Journal of Light Metals, 2001, 1, 241-249.	0.8	39
184	Eutectic Solidification Mode in Sodium Modified Al-7 mass%Si-3.5 mass%Cu-0.2 mass%Mg Casting Alloys. Materials Transactions, 2001, 42, 1981-1986.	0.4	30
185	Determination of Eutectic Solidification Mode in Sr-modified Hypoeutectic Al-Si Alloys by EBSD. Materials Transactions, 2001, 42, 207-214.	0.4	29
186	Eutectic Growth Mode in Strontium, Antimony and Phosphorus Modified Hypoeutectic Al-Si Foundry Alloys. Materials Transactions, 2001, 42, 393-396.	0.4	42
187	Eutectic nucleation and growth in hypoeutectic Al-Si alloys at different strontium levels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 949-960.	1.1	224
188	Thermal conductivities of irradiated UO2 and (U,Gd)O2. Journal of Nuclear Materials, 2001, 288, 57-65.	1.3	26
189	Rim structure formation of isothermally irradiated UO2 fuel discs. Journal of Nuclear Materials, 2001, 288, 20-28.	1.3	25
190	Rim structure formation and high burnup fuel behavior of large-grained UO2 fuels. Journal of Nuclear Materials, 2000, 278, 54-63.	1.3	62
191	Depth profiles of damage accumulation in UO2 and (U,Gd)O2 pellets irradiated with 100 MeV iodine ions. Journal of Nuclear Materials, 1999, 273, 302-309.	1.3	15
192	High resolution TEM observation and density estimation of Xe bubbles in high burnup UO2 fuels. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 481-486.	0.6	67
193	Formation of Pellet-Cladding Bonding Layer in High Burnup BWR Fuels. Journal of Nuclear Science and Technology, 1997, 34, 679-686.	0.7	28
194	Effect of grain size on recrystallization in high burnup fuel pellets. Journal of Nuclear Materials, 1997, 248, 196-203.	1.3	27
195	High resolution TEM of high burnup UO2 fuel. Journal of Nuclear Materials, 1997, 250, 244-249.	1.3	44
196	TEM analysis of pellet-cladding bonding layer in high burnup BWR fuel. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 521-526.	0.6	13
197	Irradiation-induced recrystallization in high burnup UO2 fuel. Journal of Nuclear Materials, 1995, 226, 302-310.	1.3	127
198	Corrosion behavior of unirradiated oxide fuel pellets in high temperature water. Journal of Nuclear Materials, 1995, 227, 32-39.	1.3	6

#	Article	IF	CITATIONS
199	Radiation-induced microstructural change in high burnup UO2 fuel pellets. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 301-306.	0.6	112
200	Effect of Grain Size on Microstructural Change and Damage Recovery in UO ₂ Fuels Irradiated to 23 GWd/t. Journal of Nuclear Science and Technology, 1994, 31, 929-936.	0.7	9
201	Effect of Grain Size on Microstructural Change and Damage Recovery in UO2 Fuels Irradiated to 23 GWd/t Journal of Nuclear Science and Technology, 1994, 31, 929-936.	0.7	10
202	Formation and growth of intragranular fission gas bubbles in UO2 fuels with burnup of 6–83 GWd/t. Journal of Nuclear Materials, 1993, 206, 22-34.	1.3	133
203	Thermal Recovery of Radiation Defects and Microstructural Change in Irradiated UO ₂ Fuels. Journal of Nuclear Science and Technology, 1993, 30, 900-910.	0.7	18
204	Thermal Recovery of Radiation Defects and Microstructural Change in Irradiated UO2 Fuels Journal of Nuclear Science and Technology, 1993, 30, 900-910.	0.7	20
205	Microstructural change and its influence on fission gas release in high burnup UO2 fuel. Journal of Nuclear Materials, 1992, 188, 65-72.	1.3	103
206	Non-Metal Reinforced Lead-Free Composite Solder Fabrication Methods and its Reinforcing Effects to the Suppression of Intermetallic Formation: Short Review. Applied Mechanics and Materials, 0, 421, 260-266.	0.2	27
207	XPS Analysis of Oxide Films on Lead-Free Solders with Trace Additions of Germanium and Gallium. Materials Science Forum, 0, 857, 63-67.	0.3	10
208	Effect of TiO ₂ on the Formation of Primary and Interfacial Cu ₆ Sn ₅ in Sn-0.7wt%Cu and Sn-0.7wt%Cu-0.05wt%Ni Solder Paste during Soldering. Key Engineering Materials, 0, 700, 161-169.	0.4	5
209	Peritectic Reactions and Phase Transformations of Sn-30wt%Cu for High Temperature Pb-Free Soldering Applications. Materials Science Forum, 0, 857, 58-62.	0.3	5
210	Solidification of Sn-3Ag-0.5Cu and Sn-0.7Cu-0.05Ni Solders. Materials Science Forum, 0, 857, 44-48.	0.3	1
211	Grain Refinements of Cu ₆ Sn ₅ in Sn-3wt%Ag-5wt%Cu High Temperature Solder Alloys. Solid State Phenomena, 0, 273, 20-26.	0.3	1
212	The Interaction of Sn-Ga Alloys and Au Coated Cu Substrates. Solid State Phenomena, 0, 273, 3-8.	0.3	6
	Formation of Cu ₆ Sn ₅ /(Cu,) Tj ETQq1 1 0.784314 rgBT /Overlock		
213	Cu ₃ Sn-Rich Sn-Cu/Sn-Cu-Ni Powdered Alloys and Molten Sn by Transient Liquid Bonding, Solid State Phenomena, 0, 273, 14-19.	0.3	0
214	Effect of Trace Elements on the Liquid Structure of Sn-Cu Alloys Investigated by High Energy X-Ray Diffraction. Solid State Phenomena, 0, 273, 101-106.	0.3	1
215	In-Situ Observation of Liquid Solder Alloys and Solid Substrate Reactions Using High-Voltage Transmission Electron Microscopy. SSRN Electronic Journal, 0, , .	0.4	0
216	Crystallography of Zirconium Hydrides in Recrystallized Zircaloy-2 Fuel Cladding by Electron Backscatter Diffraction. , 0, .		23

#	Article	IF	CITATIONS
217	Cobaltâ€doped Cu ₆ Sn ₅ lithiumâ€ion battery anodes with enhanced electrochemical properties. Nano Select, 0, , .	1.9	2
218	Effects of immersion silver (ImAg) and immersion tin (ImSn) surface finish on the microstructure and joint strength of Sn-3.0Ag-0.5Cu solder. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	2