Christer Larsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic engineering of yeast for production of fuels and chemicals. Current Opinion in Biotechnology, 2013, 24, 398-404.	6.6	263
2	Switching the mode of metabolism in the yeast Saccharomyces cerevisiae. EMBO Reports, 2004, 5, 532-537.	4.5	177
3	The importance of the glycerol 3-phosphate shuttle during aerobic growth ofSaccharomyces cerevisiae. Yeast, 1998, 14, 347-357.	1.7	171
4	Thermodynamic considerations in contructing energy balances for cellular growth. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1183, 221-240.	1.0	121
5	Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biochemistry, 2004, 256, 73-81.	3.1	116
6	Glycolytic flux is conditionally correlated with ATP concentration in Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. Journal of Bacteriology, 1997, 179, 7243-7250.	2.2	115
7	Role of Hexose Transport in Control of Glycolytic Flux in <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2004, 70, 5323-5330.	3.1	107
8	Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon- and nitrogen-limiting conditions. Journal of Bacteriology, 1993, 175, 4809-4816.	2.2	100
9	Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research, 2018, 18, .	2.3	94
10	Microcalorimetric monitoring of growth of Saccharomyces cerevisiae: osmotolerance in relation to physiological state. Journal of Bacteriology, 1988, 170, 4562-4568.	2.2	76
11	The importance of ATP as a regulator of glycolytic flux inSaccharomyces cerevisiae. Yeast, 2000, 16, 797-809.	1.7	76
12	Osmoregulation of the salt-tolerant yeast Debaryomyces hansenii grown in a chemostat at different salinities. Journal of Bacteriology, 1990, 172, 1769-1774.	2.2	75
13	Design of improved membrane protein production experiments: Quantitation of the host response. Protein Science, 2005, 14, 1729-1740.	7.6	62
14	Improved ethanol production by glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1998, 50, 434-439.	3.6	61
15	Use of microcalorimetric monitoring in establishing continuous energy balances and in continuous determinations of substrate and product concentrations of batch-grownSaccharomyces cerevisiae. Biotechnology and Bioengineering, 1991, 38, 447-458.	3.3	55
16	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261-268.	3.7	54
17	A comparison of stress tolerance in YPD and industrial lignocellulose-based medium among industrial and laboratory yeast strains. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1085-1091.	3.0	48
18	Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance. Biotechnology for Biofuels, 2013, 6, 101.	6.2	48

CHRISTER LARSSON

#	Article	IF	CITATIONS
19	Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaryomyces hansenii and Saccharomyces cerevisiae during salt stress. Archives of Microbiology, 1987, 147, 358-363.	2.2	45
20	Carbon Starvation Can Induce Energy Deprivation and Loss of Fermentative Capacity in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69, 3251-3257.	3.1	41
21	Coupled enzymatic hydrolysis and ethanol fermentation: ionic liquid pretreatment for enhanced yields. Biotechnology for Biofuels, 2015, 8, 135.	6.2	41
22	Kinetic Regulation of the Mitochondrial Glycerol-3-phosphate Dehydrogenase by the External NADH Dehydrogenase in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 27991-27995.	3.4	40
23	Starvation Response of Saccharomyces cerevisiae Grown in Anaerobic Nitrogen- or Carbon-Limited Chemostat Cultures. Applied and Environmental Microbiology, 2005, 71, 3007-3013.	3.1	40
24	Effect of Nutrient Starvation on the Cellular Composition and Metabolic Capacity of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2007, 73, 4839-4848.	3.1	40
25	2-Butanol and Butanone Production in Saccharomyces cerevisiae through Combination of a B12 Dependent Dehydratase and a Secondary Alcohol Dehydrogenase Using a TEV-Based Expression System. PLoS ONE, 2014, 9, e102774.	2.5	40
26	Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Applied Microbiology and Biotechnology, 2009, 81, 951-960.	3.6	39
27	Engineering of a Novel Saccharomyces cerevisiae Wine Strain with a Respiratory Phenotype at High External Glucose Concentrations. Applied and Environmental Microbiology, 2005, 71, 6185-6192.	3.1	37
28	Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. ACS Synthetic Biology, 2020, 9, 3236-3244.	3.8	36
29	Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metabolic Engineering, 2008, 10, 276-280.	7.0	34
30	Detoxification of acid pretreated spruce hydrolysates with ferrous sulfate and hydrogen peroxide improves enzymatic hydrolysis and fermentation. Bioresource Technology, 2014, 166, 559-565.	9.6	34
31	Synchronized Heat Flux Oscillations in Yeast Cell Populations. Journal of Biological Chemistry, 1996, 271, 24442-24448.	3.4	29
32	CARS microscopy of lipid stores in yeast: the impact of nutritional state and genetic background. Journal of Raman Spectroscopy, 2009, 40, 748-756.	2.5	29
33	A morpholinium ionic liquid for rice straw pretreatment to enhance ethanol production. Industrial Crops and Products, 2019, 139, 111494.	5.2	29
34	Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnology for Biofuels, 2011, 4, 59.	6.2	28
35	Metabolic uncoupling in Saccharomyces cerevisiae. Thermochimica Acta, 1995, 251, 99-110.	2.7	27
36	Cytosolic redox metabolism in aerobic chemostat cultures ofSaccharomyces cerevisiae. Yeast, 2001, 18, 611-620.	1.7	27

CHRISTER LARSSON

#	Article	IF	CITATIONS
37	Transcriptome analysis of a respiratory Saccharomyces cerevisiae strain suggests the expression of its phenotype is glucose insensitive and predominantly controlled by Hap4, Cat8 and Mig1. BMC Genomics, 2008, 9, 365.	2.8	27
38	Toward a sustainable biorefinery using highâ€gravity technology. Biofuels, Bioproducts and Biorefining, 2017, 11, 15-27.	3.7	27
39	The catabolic capacity ofSaccharomyces cerevisiaeis preserved to a higher extent during carbon compared to nitrogen starvation. Yeast, 2001, 18, 1371-1381.	1.7	26
40	A genetic analysis of the role of calcineurin and calmodulin in Ca ++ -dependent improvement of NaCl tolerance of Saccharomyces cerevisiae. Current Genetics, 1996, 30, 476-484.	1.7	25
41	Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory. Microbial Cell Factories, 2010, 9, 47.	4.0	25
42	Production of 2-butanol through <i>meso</i> -2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiology Letters, 2014, 360, 70-75.	1.8	24
43	Comparative sequence analysis and mutagenesis of Ethylene Forming Enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs. BMC Biochemistry, 2014, 15, 22.	4.4	20
44	Expression of Escherichia coli otsA in a Saccharomyces cerevisiae tps1 mutant restores trehalose 6-phosphate levels and partly restores growth and fermentation with glucose and control of glucose influx into glycolysis. Biochemical Journal, 2000, 350, 261.	3.7	19
45	Energy budgeting in studying the effect of environmental factors on the energy metabolism of yeasts. Thermochimica Acta, 1990, 172, 95-104.	2.7	18
46	Characterization of glucose transport mutants of <i>Saccharomyces cerevisiae</i> during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. FEMS Yeast Research, 2008, 8, 10-25.	2.3	18
47	Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microbial Cell Factories, 2013, 12, 89.	4.0	17
48	The role of physiological state in osmotolerance of the salt-tolerant yeast Debaryomyces hansenii. Canadian Journal of Microbiology, 1993, 39, 603-609.	1.7	16
49	Growth tolerance of Zygomycetes Mucor indicus in orange peel hydrolysate without detoxification. Process Biochemistry, 2012, 47, 836-842.	3.7	16
50	Rapamycin pre-treatment preserves viability, ATP level and catabolic capacity during carbon starvation of Saccharomyces cerevisiae. Yeast, 2005, 22, 615-623.	1.7	14
51	Catabolic capacity of Saccharomyces cerevisiae in relation to the physiological state and maintenance requirement. Thermochimica Acta, 1995, 250, 233-245.	2.7	13
52	A calorimetric and fluorescence study of batch cultures of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1989, 31, 355.	3.6	11
53	Monitoring and control of batch and fed-batch cultures of Saccharomyces cerevisiae by calorimetry. Pure and Applied Chemistry, 1993, 65, 1933-1937.	1.9	11
54	Improvement of ethanol production from birch and spruce pretreated with 1-H-3-methylmorpholinium chloride. Electronic Journal of Biotechnology, 2019, 41, 95-99.	2.2	9

#	Article	IF	CITATIONS
55	Influence of cultivation procedure for Saccharomyces cerevisiae used as pitching agent in industrial spent sulphite liquor fermentations. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1787-1792.	3.0	8
56	Fermentation performance and physiology of two strains of Saccharomyces cerevisiaeduring growth in high gravity spruce hydrolysate and spent sulphite liquor. BMC Biotechnology, 2014, 14, 47.	3.3	7
57	Calorimetry of Microbial Processes. Handbook of Thermal Analysis and Calorimetry, 1999, , 367-404.	1.6	6
58	Continuous estimation of product concentration with calorimetry and gas analysis during anaerobic fermentations of Saccharomyces cerevisiae. Thermochimica Acta, 2002, 394, 185-190.	2.7	6
59	The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2006, 71, 533-542.	3.6	6
60	The importance of the glycerol 3â€phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast, 1998, 14, 347-357.	1.7	6
61	Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE. Biotechnology and Bioprocess Engineering, 2017, 22, 195-199.	2.6	5
62	Ethylene production in relation to nitrogen metabolism in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, n/a-n/a.	2.3	4
63	The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. , 1998, 14, 347.		2
64	The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast, 2000, 16, 797-809.	1.7	1