
Aditee Mitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From webs, loops, shunts, and pumps to microbial multitasking: Evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a future ocean. Limnology and Oceanography, 2022, 67, 585-597.	3.1	30
2	Acquired Phototrophy and Its Implications for Bloom Dynamics of the Teleaulax-Mesodinium-Dinophysis-Complex. Frontiers in Marine Science, 2022, 8, .	2.5	8
3	â€~Boomâ€andâ€busted' dynamics of phytoplankton–virus interactions explain the paradox of the plankton New Phytologist, 2022, 234, 990-1002.	^{1.} 7.3	8
4	Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas. Progress in Oceanography, 2021, 190, 102481.	3.2	27
5	Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in Phytoplankton. Frontiers in Marine Science, 2021, 8, .	2.5	8
6	Subtle Differences in the Representation of Consumer Dynamics Have Large Effects in Marine Food Web Models. Frontiers in Marine Science, 2021, 8, .	2.5	1
7	Mixoplankton interferences in dilution grazing experiments. Scientific Reports, 2021, 11, 23849.	3.3	7
8	12 Multifaceted climatic change and nutrient effects on harmful algae require multifaceted models. , 2020, , 473-518.		2
9	Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. Journal of Plankton Research, 2019, 41, 375-391.	1.8	119
10	Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 2019, 28, 418-428.	5.8	49
11	Mixotrophy Among Freshwater and Marine Protists. , 2019, , 199-199.		5
12	Exploring nonlinear functional responses of zooplankton grazers in dilution experiments via optimization techniques. Limnology and Oceanography, 2019, 64, 774-784.	3.1	8
13	Le plancton animal qui voulait devenir végétal. Pourlascience Fr, 2019, Nº 496 - février, 50-59.	0.0	0
14	Mixotrophy in Harmful Algal Blooms: By Whom, on Whom, When, Why, and What Next. Ecological Studies, 2018, , 113-132.	1.2	33
15	The Perfect Beast. Scientific American, 2018, 318, 26-33.	1.0	4
16	Modelling mixotrophic functional diversity and implications for ecosystem function. Journal of Plankton Research, 2018, 40, 627-642.	1.8	47
17	Simulating Effects of Variable Stoichiometry and Temperature on Mixotrophy in the Harmful Dinoflagellate Karlodinium veneficum. Frontiers in Marine Science, 2018, 5, .	2.5	38
18	Toward a mechanistic understanding of trophic structure: inferences from simulating stable isotope ratios. Marine Biology, 2018, 165, 147.	1.5	10

Aditee Mitra

#	Article	IF	CITATIONS
19	Minimising losses to predation during microalgae cultivation. Journal of Applied Phycology, 2017, 29, 1829-1840.	2.8	32
20	Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170664.	2.6	63
21	Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea. Progress in Oceanography, 2017, 157, 1-11.	3.2	23
22	Mixotrophy in the Marine Plankton. Annual Review of Marine Science, 2017, 9, 311-335.	11.6	418
23	Modeling Plankton Mixotrophy: A Mechanistic Model Consistent with the Shuter-Type Biochemical Approach. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	25
24	chapter 9 Ocean Acidification with (De)eutrophication will Alter Future Phytoplankton Growth and Succession. , 2017, , 207-218.		1
25	Why Plankton Modelers Should Reconsider Using Rectangular Hyperbolic (Michaelis-Menten, Monod) Descriptions of Predator-Prey Interactions. Frontiers in Marine Science, 2016, 3, .	2.5	32
26	Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen:phosphorus stoichiometry. Harmful Algae, 2016, 55, 1-12.	4.8	40
27	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	1.5	290
28	Exploring the Implications of the Stoichiometric Modulation of Planktonic Predation. , 2016, , 77-89.		0
29	Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling. Journal of Plankton Research, 2015, 37, 683-691.	1.8	32
30	Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142604.	2.6	61
31	Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. Journal of Plankton Research, 2015, 37, 519-529.	1.8	53
32	Decrease in diatom palatability contributes to bloom formation in the Western English Channel. Progress in Oceanography, 2015, 137, 484-497.	3.2	19
33	Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 2014, 11, 5285-5306.	3.3	177
34	Corrigendum to "Mechanisms of microbial carbon sequestration in the ocean – future research directions" published in Biogeosciences, 11, 5285–5306, 2014. Biogeosciences, 2014, 11, 5565-5565.	3.3	1
35	The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 2014, 11, 995-1005.	3.3	314
36	Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Progress in Oceanography, 2014, 129, 176-199.	3.2	146

Aditee Mitra

#	Article	IF	CITATIONS
37	Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus, 2013, 3, 20120037.	3.0	37
38	Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models. Journal of Marine Systems, 2013, 125, 41-53.	2.1	34
39	Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 2013, 35, 3-11.	1.8	344
40	Towards an adaptive model for simulating growth of marine mesozooplankton: A macromolecular perspective. Ecological Modelling, 2012, 225, 1-18.	2.5	7
41	Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts?. Journal of Marine Systems, 2010, 83, 158-169.	2.1	70
42	Defining the "to―in end-to-end models. Progress in Oceanography, 2010, 84, 39-42.	3.2	24
43	Dysfunctionality in ecosystem models: An underrated pitfall?. Progress in Oceanography, 2010, 84, 66-68.	3.2	19
44	Building the "perfect beast": modelling mixotrophic plankton. Journal of Plankton Research, 2009, 31, 965-992.	1.8	121
45	Are closure terms appropriate or necessary descriptors of zooplankton loss in nutrient–phytoplankton–zooplankton type models?. Ecological Modelling, 2009, 220, 611-620.	2.5	44
46	Importance of Interactions between Food Quality, Quantity, and Gut Transit Time on Consumer Feeding, Growth, and Trophic Dynamics. American Naturalist, 2007, 169, 632-646.	2.1	79
47	Accounting for grazing dynamics in nitrogenâ€phytoplanktonâ€zooplankton (NPZ) models. Limnology and Oceanography, 2007, 52, 649-661.	3.1	61
48	Importance of Interactions between Food Quality, Quantity, and Gut Transit Time on Consumer Feeding, Growth, and Trophic Dynamics. American Naturalist, 2007, 169, 632.	2.1	4
49	Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2006, 2, 194-197.	2.3	145
50	Accounting for variation in prey selectivity by zooplankton. Ecological Modelling, 2006, 199, 82-92.	2.5	51
51	A multi-nutrient model for the description of stoichiometric modulation of predation in micro- and mesozooplankton. Journal of Plankton Research, 2006, 28, 597-611.	1.8	54
52	Predator–prey interactions: is â€~ecological stoichiometry' sufficient when good food goes bad?. Journal of Plankton Research, 2005, 27, 393-399.	1.8	154
53	The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study. Acta Oecologica, 2003, 24, S359-S367.	1.1	10
54	Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration. Journal of Plankton Research, 0, , .	1.8	9

#	Article	IF	CITATIONS
55	Plants Are Not Animals and Animals Are Not Plants, Right? Wrong! Tiny Creatures in the Ocean Can Be Both at Once!. Frontiers for Young Minds, 0, 7, .	0.8	2