Aditee Mitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274034/publications.pdf

Version: 2024-02-01

55 3,401 papers citations h

201674 206112 48
h-index g-index

56 56 all docs citations

56 times ranked 2901 citing authors

#	Article	IF	CITATIONS
1	Mixotrophy in the Marine Plankton. Annual Review of Marine Science, 2017, 9, 311-335.	11.6	418
2	Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. Journal of Plankton Research, 2013, 35, 3-11.	1.8	344
3	The role of mixotrophic protists in the biological carbon pump. Biogeosciences, 2014, 11, 995-1005.	3.3	314
4	Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. Protist, 2016, 167, 106-120.	1.5	290
5	Mechanisms of microbial carbon sequestration in the ocean – future research directions. Biogeosciences, 2014, 11, 5285-5306.	3.3	177
6	Predator–prey interactions: is â€~ecological stoichiometry' sufficient when good food goes bad?. Journal of Plankton Research, 2005, 27, 393-399.	1.8	154
7	Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Progress in Oceanography, 2014, 129, 176-199.	3.2	146
8	Promotion of harmful algal blooms by zooplankton predatory activity. Biology Letters, 2006, 2, 194-197.	2.3	145
9	Building the "perfect beast": modelling mixotrophic plankton. Journal of Plankton Research, 2009, 31, 965-992.	1.8	121
10	Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. Journal of Plankton Research, 2019, 41, 375-391.	1.8	119
11	Importance of Interactions between Food Quality, Quantity, and Gut Transit Time on Consumer Feeding, Growth, and Trophic Dynamics. American Naturalist, 2007, 169, 632-646.	2.1	79
12	Modelling mixotrophy in harmful algal blooms: More or less the sum of the parts?. Journal of Marine Systems, 2010, 83, 158-169.	2.1	70
13	Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170664.	2.6	63
14	Accounting for grazing dynamics in nitrogenâ€phytoplanktonâ€zooplankton (NPZ) models. Limnology and Oceanography, 2007, 52, 649-661.	3.1	61
15	Ocean acidification with (de)eutrophication will alter future phytoplankton growth and succession. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142604.	2.6	61
16	A multi-nutrient model for the description of stoichiometric modulation of predation in micro- and mesozooplankton. Journal of Plankton Research, 2006, 28, 597-611.	1.8	54
17	Impact of zooplankton food selectivity on plankton dynamics and nutrient cycling. Journal of Plankton Research, 2015, 37, 519-529.	1.8	53
18	Accounting for variation in prey selectivity by zooplankton. Ecological Modelling, 2006, 199, 82-92.	2.5	51

#	Article	IF	Citations
19	Sampling bias misrepresents the biogeographical significance of constitutive mixotrophs across global oceans. Global Ecology and Biogeography, 2019, 28, 418-428.	5.8	49
20	Modelling mixotrophic functional diversity and implications for ecosystem function. Journal of Plankton Research, 2018, 40, 627-642.	1.8	47
21	Are closure terms appropriate or necessary descriptors of zooplankton loss in nutrient–phytoplankton–zooplankton type models?. Ecological Modelling, 2009, 220, 611-620.	2.5	44
22	Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen:phosphorus stoichiometry. Harmful Algae, 2016, 55, 1-12.	4.8	40
23	Simulating Effects of Variable Stoichiometry and Temperature on Mixotrophy in the Harmful Dinoflagellate Karlodinium veneficum. Frontiers in Marine Science, 2018, 5, .	2.5	38
24	Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus, 2013, 3, 20120037.	3.0	37
25	Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models. Journal of Marine Systems, 2013, 125, 41-53.	2.1	34
26	Mixotrophy in Harmful Algal Blooms: By Whom, on Whom, When, Why, and What Next. Ecological Studies, 2018, , 113-132.	1.2	33
27	Acclimation, adaptation, traits and trade-offs in plankton functional type models: reconciling terminology for biology and modelling. Journal of Plankton Research, 2015, 37, 683-691.	1.8	32
28	Why Plankton Modelers Should Reconsider Using Rectangular Hyperbolic (Michaelis-Menten, Monod) Descriptions of Predator-Prey Interactions. Frontiers in Marine Science, 2016, 3, .	2.5	32
29	Minimising losses to predation during microalgae cultivation. Journal of Applied Phycology, 2017, 29, 1829-1840.	2.8	32
30	From webs, loops, shunts, and pumps to microbial multitasking: Evolving concepts of marine microbial ecology, the mixoplankton paradigm, and implications for a future ocean. Limnology and Oceanography, 2022, 67, 585-597.	3.1	30
31	Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas. Progress in Oceanography, 2021, 190, 102481.	3.2	27
32	Modeling Plankton Mixotrophy: A Mechanistic Model Consistent with the Shuter-Type Biochemical Approach. Frontiers in Ecology and Evolution, 2017, 5, .	2.2	25
33	Defining the "to―in end-to-end models. Progress in Oceanography, 2010, 84, 39-42.	3.2	24
34	Introducing mixotrophy into a biogeochemical model describing an eutrophied coastal ecosystem: The Southern North Sea. Progress in Oceanography, 2017, 157, 1-11.	3.2	23
35	Dysfunctionality in ecosystem models: An underrated pitfall?. Progress in Oceanography, 2010, 84, 66-68.	3.2	19
36	Decrease in diatom palatability contributes to bloom formation in the Western English Channel. Progress in Oceanography, 2015, 137, 484-497.	3.2	19

#	Article	IF	CITATIONS
37	The influence of changes in predation rates on marine microbial predator/prey interactions: a modelling study. Acta Oecologica, 2003, 24, S359-S367.	1.1	10
38	Toward a mechanistic understanding of trophic structure: inferences from simulating stable isotope ratios. Marine Biology, 2018, 165, 147.	1.5	10
39	Biological or microbial carbon pump? The role of phytoplankton stoichiometry in ocean carbon sequestration. Journal of Plankton Research, 0, , .	1.8	9
40	Exploring nonlinear functional responses of zooplankton grazers in dilution experiments via optimization techniques. Limnology and Oceanography, 2019, 64, 774-784.	3.1	8
41	Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in Phytoplankton. Frontiers in Marine Science, 2021, 8, .	2.5	8
42	Acquired Phototrophy and Its Implications for Bloom Dynamics of the Teleaulax-Mesodinium-Dinophysis-Complex. Frontiers in Marine Science, 2022, 8, .	2.5	8
43	â€~Boomâ€andâ€busted' dynamics of phytoplankton–virus interactions explain the paradox of the planktor New Phytologist, 2022, 234, 990-1002.	^{1,} 7.3	8
44	Towards an adaptive model for simulating growth of marine mesozooplankton: A macromolecular perspective. Ecological Modelling, 2012, 225, 1-18.	2.5	7
45	Mixoplankton interferences in dilution grazing experiments. Scientific Reports, 2021, 11, 23849.	3.3	7
46	Mixotrophy Among Freshwater and Marine Protists. , 2019, , 199-199.		5
47	The Perfect Beast. Scientific American, 2018, 318, 26-33.	1.0	4
48	Importance of Interactions between Food Quality, Quantity, and Gut Transit Time on Consumer Feeding, Growth, and Trophic Dynamics. American Naturalist, 2007, 169, 632.	2.1	4
49	12 Multifaceted climatic change and nutrient effects on harmful algae require multifaceted models. , 2020, , 473-518.		2
50	Plants Are Not Animals and Animals Are Not Plants, Right? Wrong! Tiny Creatures in the Ocean Can Be Both at Once!. Frontiers for Young Minds, 0, 7, .	0.8	2
51	Corrigendum to "Mechanisms of microbial carbon sequestration in the ocean – future research directions" published in Biogeosciences, 11, 5285–5306, 2014. Biogeosciences, 2014, 11, 5565-5565.	3.3	1
52	chapter 9 Ocean Acidification with (De)eutrophication will Alter Future Phytoplankton Growth and Succession., 2017,, 207-218.		1
53	Subtle Differences in the Representation of Consumer Dynamics Have Large Effects in Marine Food Web Models. Frontiers in Marine Science, 2021, 8, .	2.5	1
54	Exploring the Implications of the Stoichiometric Modulation of Planktonic Predation., 2016,, 77-89.		0

Aditee Mitra

#	Article	lF	CITATIONS
55	Le plancton animal qui voulait devenir végétal. Pourlascience Fr, 2019, N° 496 - février, 50-59.	0.0	0