Hirokazu Hirai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740289/publications.pdf

Version: 2024-02-01

146 papers 6,498 citations

94433 37 h-index 79698 73 g-index

157 all docs

157 docs citations

times ranked

157

7811 citing authors

#	Article	IF	CITATIONS
1	CD38 is critical for social behaviour by regulating oxytocin secretion. Nature, 2007, 446, 41-45.	27.8	614
2	Molecular Determinants of Agonist Discrimination by NMDA Receptor Subunits: Analysis of the Glutamate Binding Site on the NR2B Subunit. Neuron, 1997, 18, 493-503.	8.1	452
3	Cbln1 is essential for synaptic integrity and plasticity in the cerebellum. Nature Neuroscience, 2005, 8, 1534-1541.	14.8	301
4	Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications, 2016, 7, 11100.	12.8	289
5	Phosphorylation of Serine-880 in GluR2 by Protein Kinase C Prevents Its C Terminus from Binding with Glutamate Receptor-Interacting Protein. Journal of Neurochemistry, 2002, 73, 1765-1768.	3.9	231
6	The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6031-6036.	7.1	206
7	Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neuroscience Research, 2010, 67, 181-191.	1.9	176
8	Advanced CUBIC tissue clearing for whole-organ cell profiling. Nature Protocols, 2019, 14, 3506-3537.	12.0	127
9	Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neuroscience Letters, 2018, 665, 182-188.	2.1	125
10	New role of \hat{l} 2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nature Neuroscience, 2003, 6, 869-876.	14.8	123
11	Red fluorescent protein-based cAMP indicator applicable to optogenetics and in vivo imaging. Scientific Reports, 2017, 7, 7351.	3.3	117
12	Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science, 2014, 344, 1020-1023.	12.6	115
13	The PtdIns(3,4)P2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature, 2010, 465, 497-501.	27.8	108
14	The Regulatory Connection between the Activity of Granule Cell NMDA Receptors and Dendritic Differentiation of Cerebellar Purkinje Cells. Journal of Neuroscience, 2000, 20, 5217-5224.	3.6	107
15	Silencing Mutant Ataxin-3 Rescues Motor Deficits and Neuropathology in Machado-Joseph Disease Transgenic Mice. PLoS ONE, 2013, 8, e52396.	2.5	104
16	Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 2020, 11, 471.	12.8	102
17	Lentivectorâ€mediated rescue from cerebellar ataxia in a mouse model of spinocerebellar ataxia. EMBO Reports, 2008, 9, 393-399.	4.5	99
18	Arc/Arg3.1 Is a Postsynaptic Mediator of Activity-Dependent Synapse Elimination in the Developing Cerebellum. Neuron, 2013, 78, 1024-1035.	8.1	96

#	Article	IF	CITATIONS
19	Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado–Joseph disease. Brain, 2013, 136, 2173-2188.	7.6	86
20	Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials, 2016, 82, 124-137.	11.4	86
21	Mutant PKCÎ ³ in Spinocerebellar Ataxia Type 14 Disrupts Synapse Elimination and Long-Term Depression in Purkinje Cells <i>In Vivo</i> . Journal of Neuroscience, 2011, 31, 14324-14334.	3.6	81
22	Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain, 2015, 138, 320-335.	7.6	78
23	Displays of paternal mouse pup retrieval following communicative interaction with maternal mates. Nature Communications, 2013, 4, 1346.	12.8	69
24	Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. Journal of Physiology, 2017, 595, 141-164.	2.9	65
25	Mutant Ataxin-3 with an Abnormally Expanded Polyglutamine Chain Disrupts Dendritic Development and Metabotropic Glutamate Receptor Signaling in Mouse Cerebellar Purkinje Cells. Cerebellum, 2014, 13, 29-41.	2.5	63
26	Rescue of abnormal phenotypes of the δ2 glutamate receptorâ€null mice by mutant δ2 transgenes. EMBO Reports, 2005, 6, 90-95.	4.5	56
27	In vivo transduction of murine cerebellar Purkinje cells by HIV-derived lentiviral vectors. Brain Research, 2006, 1082, 11-22.	2.2	55
28	Inositol 1,4,5-Trisphosphate Receptor Type 1 in Granule Cells, Not in Purkinje Cells, Regulates the Dendritic Morphology of Purkinje Cells through Brain-Derived Neurotrophic Factor Production. Journal of Neuroscience, 2006, 26, 10916-10924.	3.6	52
29	Kv3.3 channels harbouring a mutation of spinocerebellar ataxia type 13 alter excitability and induce cell death in cultured cerebellar Purkinje cells. Journal of Physiology, 2014, 592, 229-247.	2.9	52
30	Mesenchymal Stem Cells Ameliorate Cerebellar Pathology in a Mouse Model of Spinocerebellar Ataxia Type 1. Cerebellum, 2014, 13, 323-330.	2.5	49
31	A novel GTPase, CRAG, mediates promyelocytic leukemia protein–associated nuclear body formation and degradation of expanded polyglutamine protein. Journal of Cell Biology, 2006, 172, 497-504.	5.2	48
32	CD3 and Immunoglobulin G Fc Receptor Regulate Cerebellar Functions. Molecular and Cellular Biology, 2007, 27, 5128-5134.	2.3	48
33	FMRP Expression Levels in Mouse Central Nervous System Neurons Determine Behavioral Phenotype. Human Gene Therapy, 2016, 27, 982-996.	2.7	47
34	Minimal Purkinje Cell-Specific PCP2/L7 Promoter Virally Available for Rodents and Non-human Primates. Molecular Therapy - Methods and Clinical Development, 2017, 6, 159-170.	4.1	47
35	Elavl3 is essential for the maintenance of Purkinje neuron axons. Scientific Reports, 2018, 8, 2722.	3.3	47
36	Distinct transduction profiles in the CNS via three injection routes of AAV9 and the application to generation of a neurodegenerative mouse model. Molecular Therapy - Methods and Clinical Development, 2014, 1, 14032.	4.1	44

#	Article	IF	Citations
37	Npas4 Regulates Mdm2 and thus Dcx in Experience-Dependent Dendritic Spine Development of Newborn Olfactory Bulb Interneurons. Cell Reports, 2014, 8, 843-857.	6.4	43
38	Neuropeptide Y mitigates neuropathology and motor deficits in mouse models of Machado–Joseph disease. Human Molecular Genetics, 2015, 24, 5451-5463.	2.9	43
39	CD38 positively regulates postnatal development of astrocytes cell-autonomously and oligodendrocytes non-cell-autonomously. Glia, 2017, 65, 974-989.	4.9	43
40	Modification of AMPA receptor clustering regulates cerebellar synaptic plasticity. Neuroscience Research, 2001, 39, 261-267.	1.9	42
41	Inhibitory effects of the antiepileptic drug ethosuximide on G protein-activated inwardly rectifying K+channels. Neuropharmacology, 2009, 56, 499-506.	4.1	40
42	Efficient whole brain transduction by systemic infusion of minimally purified AAV-PHP.eB. Journal of Neuroscience Methods, 2020, 346, 108914.	2.5	40
43	CD38 in the nucleus accumbens and oxytocin are related to paternal behavior in mice. Molecular Brain, 2013, 6, 41.	2.6	39
44	Rapamycin activates mammalian microautophagy. Journal of Pharmacological Sciences, 2019, 140, 201-204.	2.5	39
45	Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. European Journal of Neuroscience, 2006, 24, 371-380.	2.6	38
46	Ca2+permeability of the channel pore is not essential for the \hat{l} 2 glutamate receptor to regulate synaptic plasticity and motor coordination. Journal of Physiology, 2007, 579, 729-735.	2.9	38
47	High Transgene Expression by Lentiviral Vectors Causes Maldevelopment of Purkinje Cells In Vivo. Cerebellum, 2010, 9, 291-302.	2.5	38
48	Disruption of metabotropic glutamate receptor signalling is a major defect at cerebellar parallel fibreâ€"Purkinje cell synapses in ⟨i⟩staggerer⟨/i⟩ mutant mice. Journal of Physiology, 2011, 589, 3191-3209.	2.9	38
49	A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. Journal of Neuroscience, 2016, 36, 8210-8227.	3.6	38
50	5T4 Glycoprotein Regulates the Sensory Input-Dependent Development of a Specific Subtype of Newborn Interneurons in the Mouse Olfactory Bulb. Journal of Neuroscience, 2012, 32, 2217-2226.	3.6	37
51	Neurotropic Properties of AAV-PHP.B Are Shared among Diverse Inbred Strains of Mice. Molecular Therapy, 2019, 27, 700-704.	8.2	37
52	Interaction of the C-terminal domain of \hat{l} glutamate receptor with spectrin in the dendritic spines of cultured Purkinje cells. Neuroscience Research, 1999, 34, 281-287.	1.9	35
53	A Large Form of Secretogranin III Functions as a Sorting Receptor for Chromogranin A Aggregates in PC12 Cells. Molecular Endocrinology, 2008, 22, 1935-1949.	3.7	34
54	Purkinje-cell-preferential transduction by lentiviral vectors with the murine stem cell virus promoter. Neuroscience Letters, 2008, 443, 7-11.	2.1	32

#	Article	IF	Citations
55	Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice. Molecular and Cellular Biology, 2015, 35, 1557-1572.	2.3	32
56	Re-establishing ataxin-2 downregulates translation of mutant ataxin-3 and alleviates Machado–Joseph disease. Brain, 2015, 138, 3537-3554.	7.6	32
57	Lysosomal dysfunction and early glial activation are involved in the pathogenesis of spinocerebellar ataxia type 21 caused by mutant transmembrane protein 240. Neurobiology of Disease, 2018, 120, 34-50.	4.4	32
58	Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum, 2008, 7, 273-278.	2.5	31
59	Clustering of \hat{l} glutamate receptors is regulated by the actin cytoskeleton in the dendritic spines of cultured rat Purkinje cells. European Journal of Neuroscience, 2000, 12, 563-570.	2.6	29
60	Ipsilateral corticotectal pathway inhibits the formation of long-term potentiation (LTP) in the rat superior colliculus through GABAergic mechanism. Brain Research, 1993, 629, 23-30.	2.2	27
61	GABAergic neuron-specific whole-brain transduction by AAV-PHP.B incorporated with a new GAD65 promoter. Molecular Brain, 2021, 14, 33.	2.6	27
62	Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements. ELife, $2018, 7, .$	6.0	27
63	Plasticity of neural connections underlying oxytocin-mediated parental behaviors of male mice. Neuron, 2022, 110, 2009-2023.e5.	8.1	27
64	Ca2+-dependent regulation of synaptic $\hat{\Gamma}^2$ glutamate receptor density in cultured rat Purkinje neurons. European Journal of Neuroscience, 2001, 14, 73-82.	2.6	26
65	Organotypic Coculture Preparation for the Study of Developmental Synapse Elimination in Mammalian Brain. Journal of Neuroscience, 2012, 32, 11657-11670.	3.6	26
66	Activity-Dependent Neurotrophin Signaling Underlies Developmental Switch of Ca ²⁺ Channel Subtypes Mediating Neurotransmitter Release. Journal of Neuroscience, 2013, 33, 18755-18763.	3.6	26
67	Identification and molecular docking studies for novel inverse agonists of SREB, super conserved receptor expressed in brain. Genes To Cells, 2016, 21, 717-727.	1.2	26
68	Fluorescentâ€based evaluation of chaperoneâ€mediated autophagy and microautophagy activities in cultured cells. Genes To Cells, 2016, 21, 861-873.	1.2	26
69	Targeting inhibitory cerebellar circuitry to alleviate behavioral deficits in a mouse model for studying idiopathic autism. Neuropsychopharmacology, 2020, 45, 1159-1170.	5.4	26
70	Effects of Neutralizing Antibody Production on AAV-PHP.B-Mediated Transduction of the Mouse Central Nervous System. Molecular Neurobiology, 2019, 56, 4203-4214.	4.0	25
71	Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter. Journal of Neuroscience Methods, 2014, 223, 133-143.	2.5	24
72	Identification and characterization of PKC \hat{l}^3 , a kinase associated with SCA14, as an amyloidogenic protein. Human Molecular Genetics, 2015, 24, 525-539.	2.9	22

#	Article	IF	CITATIONS
73	Mesenchymal Stem Cells as a Potential Therapeutic Tool for Spinocerebellar Ataxia. Cerebellum, 2015, 14, 165-170.	2.5	22
74	A CDC42EP4/septin-based perisynaptic glial scaffold facilitates glutamate clearance. Nature Communications, 2015, 6, 10090.	12.8	21
75	Long-term potentiation of neurotransmission in the inferior colliculus of the rat. Neuroscience Letters, 1995, 195, 175-178.	2.1	20
76	Cranial irradiation induces bone marrow-derived microglia in adult mouse brain tissue. Journal of Radiation Research, 2014, 55, 713-719.	1.6	20
77	Viral Vector-Based Dissection of Marmoset GFAP Promoter in Mouse and Marmoset Brains. PLoS ONE, 2016, 11, e0162023.	2.5	20
78	Task Force Paper On Cerebellar Transplantation: Are We Ready to Treat Cerebellar Disorders with Cell Therapy?. Cerebellum, 2019, 18, 575-592.	2.5	20
79	Caffeine alleviates progressive motor deficits in a transgenic mouse model of spinocerebellar ataxia. Annals of Neurology, 2017, 81, 407-418.	5. 3	19
80	Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neuroscience Letters, 2021, 756, 135956.	2.1	19
81	Fusion of Human Fetal Mesenchymal Stem Cells with "Degenerating―Cerebellar Neurons in Spinocerebellar Ataxia Type 1 Model Mice. PLoS ONE, 2016, 11, e0164202.	2.5	19
82	The release of glutamate and accumulation of intracellular calcium in the guinea pig hippocampal slices during glucose deprivation. Neuroscience Letters, 1995, 189, 21-24.	2.1	18
83	The scaffold protein JSAP1 regulates proliferation and differentiation of cerebellar granule cell precursors by modulating JNK signaling. Molecular and Cellular Neurosciences, 2008, 39, 569-578.	2.2	18
84	Transduction Profile of the Marmoset Central Nervous System Using Adeno-Associated Virus Serotype 9 Vectors. Molecular Neurobiology, 2017, 54, 1745-1758.	4.0	18
85	Morphological and Functional Attenuation of Degeneration of Peripheral Neurons by Mesenchymal Stem Cellâ€Conditioned Medium in Spinocerebellar Ataxia Type 1â€Knockâ€in Mice. CNS Neuroscience and Therapeutics, 2016, 22, 670-676.	3.9	17
86	Mesenchymal stem cells attenuate peripheral neuronal degeneration in spinocerebellar ataxia type 1 knockin mice. Journal of Neuroscience Research, 2016, 94, 246-252.	2.9	17
87	Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiology of Disease, 2019, 121, 263-273.	4.4	17
88	Type 1 metabotropic glutamate receptor and its signaling molecules as therapeutic targets for the treatment of cerebellar disorders. Current Opinion in Pharmacology, 2018, 38, 51-58.	3.5	16
89	Protein Kinase C in the Cerebellum: Its Significance and Remaining Conundrums. Cerebellum, 2018, 17, 23-27.	2.5	16
90	Contribution of Thyrotropin-Releasing Hormone to Cerebellar Long-Term Depression and Motor Learning. Frontiers in Cellular Neuroscience, 2018, 12, 490.	3.7	16

#	Article	IF	Citations
91	d-Cysteine promotes dendritic development in primary cultured cerebellar Purkinje cells via hydrogen sulfide production. Molecular and Cellular Neurosciences, 2018, 93, 36-47.	2.2	16
92	Impairment of spinal motor neurons in spinocerebellar ataxia type 1-knock-in mice. Neuroscience Letters, 2013, 535, 67-72.	2.1	15
93	Glucocorticoids negatively regulates chaperone mediated autophagy and microautophagy. Biochemical and Biophysical Research Communications, 2020, 528, 199-205.	2.1	15
94	Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. Cerebellum, 2022, 21, 452-481.	2.5	15
95	The clustering of NMDA receptor NR1 subunit is regulated by the interaction between the C-terminal exon cassettes and the cytoskeleton. Neuroscience Research, 1999, 34, 157-163.	1.9	14
96	Dopamine release via the vacuolar ATPase VO sector c-subunit, confirmed in N18 neuroblastoma cells, results in behavioral recovery in hemiparkinsonian mice. Neurochemistry International, 2012, 61, 907-912.	3.8	14
97	The neurotoxic effect of lactational PFOS exposure on cerebellar functional development in male mice. Food and Chemical Toxicology, 2022, 159, 112751.	3.6	14
98	Excitatory and inhibitory effects of toluene on neural activity in guinea pig hippocampal slices. Neuroscience Letters, 1993, 158, 63-66.	2.1	13
99	Viral Vector-Based Evaluation of Regulatory Regions in the Neuron-Specific Enolase (NSE) Promoter in Mouse Cerebellum In Vivo. Cerebellum, 2017, 16, 913-922.	2.5	13
100	Characterization of mutant mice that express polyglutamine in cerebellar Purkinje cells. Brain Research, 2009, 1255, 9-17.	2.2	12
101	Long-term oral administration of the NMDA receptor antagonist memantine extends life span in spinocerebellar ataxia type 1 knock-in mice. Neuroscience Letters, 2015, 592, 37-41.	2.1	12
102	Chronic optogenetic stimulation of Bergman glia leads to dysfunction of EAAT1 and Purkinje cell death, mimicking the events caused by expression of pathogenic ataxin-1. Neurobiology of Disease, 2021, 154, 105340.	4.4	12
103	A cortical cell ensemble in the posterior parietal cortex controls past experience-dependent memory updating. Nature Communications, 2022, 13, 41.	12.8	12
104	Toluene inhibits synaptic transmission without causing gross morphological disturbances. Brain Research, 1994, 664, 266-270.	2.2	11
105	Inflammation-induced reversible switch of the neuron-specific enolase promoter from Purkinje neurons to Bergmann glia. Scientific Reports, 2016, 6, 27758.	3.3	11
106	Safety profile of the intravenous administration of brain-targeted stable nucleic acid lipid particles. Data in Brief, 2016, 6, 700-705.	1.0	11
107	Adenosine facilitates glutamate release in a protein kinase-dependent manner in superior colliculus slices. European Journal of Pharmacology, 1994, 256, 65-71.	3.5	10
108	A simple method using -NMR spectroscopy for the study of protein phosphorylation. Brain Research Protocols, 2000, 5, 182-189.	1.6	10

#	Article	IF	Citations
109	Protein kinase $C\hat{I}^3$ in cerebellar Purkinje cells regulates Ca ²⁺ -activated large-conductance K ⁺ channels and motor coordination. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
110	Inhibitory effect of GABA (\hat{i}^3 -aminobutyric acid) on the induction of long-term potentiation in guinea pig superior colliculus slices. Neuroscience Letters, 1993, 149, 198-200.	2.1	9
111	Plasticity of the developmentally arrested staggerer cerebellum in response to exogenous RORα. Brain Structure and Function, 2016, 221, 2879-2889.	2.3	9
112	Global Knockdown of Retinoid-related Orphan Receptor \hat{l}_{\pm} in Mature Purkinje Cells Reveals Aberrant Cerebellar Phenotypes of Spinocerebellar Ataxia. Neuroscience, 2021, 462, 328-336.	2.3	9
113	ASSOCIATION BETWEEN DIASTOLIC BLOOD PRESSURE AND LOWER HEMOGLOBIN A1C AND FRONTAL BRAIN ATROPHY IN ELDERLY SUBJECTS WITH DIABETES MELLITUS. Journal of the American Geriatrics Society, 2006, 54, 1005-1007.	2.6	8
114	Modulation of lentiviral vector tropism in cerebellar Purkinje cells in vivo by a lysosomal cysteine protease cathepsin K. Journal of NeuroVirology, 2012, 18, 521-531.	2.1	8
115	The Murine Stem Cell Virus Promoter Drives Correlated Transgene Expression in the Leukocytes and Cerebellar Purkinje Cells of Transgenic Mice. PLoS ONE, 2012, 7, e51015.	2.5	8
116	Retrograde Signaling for Climbing Fiber Synapse Elimination. Cerebellum, 2015, 14, 4-7.	2.5	8
117	Regulatory connection between the expression level of classical protein kinase C and pruning of climbing fibers from cerebellar Purkinje cells. Journal of Neurochemistry, 2017, 143, 660-670.	3.9	8
118	Deletion of Class II ADP-Ribosylation Factors in Mice Causes Tremor by the Nav1.6 Loss in Cerebellar Purkinje Cell Axon Initial Segments. Journal of Neuroscience, 2019, 39, 6339-6353.	3.6	8
119	BATTLE: Genetically Engineered Strategies for Split-Tunable Allocation of Multiple Transgenes in the Nervous System. IScience, 2020, 23, 101248.	4.1	8
120	Production of neuron-preferential lentiviral vectors. Protocol Exchange, 0, , .	0.3	8
121	Exogenously applied gangliosides (GM1, GD1a and Gmix) fail to facilitate the induction of long-term potentiation (LTP) in the slices of hippocampus and superior colliculus of the guinea pig. Neuroscience Letters, 1994, 170, 269-272.	2.1	7
122	Basic Research on Cerebellar Gene Therapy Using Lentiviral Vectors. Cerebellum, 2012, 11, 443-445.	2.5	7
123	Ataxic phenotype and neurodegeneration are triggered by the impairment of chaperoneâ€mediated autophagy in cerebellar neurons. Neuropathology and Applied Neurobiology, 2021, 47, 198-209.	3.2	7
124	Protective roles of MITOL against myocardial senescence and ischemic injury partly via Drp1 regulation. IScience, 2022, 25, 104582.	4.1	7
125	Urinary <scp>FABP1</scp> is a biomarker for impaired proximal tubular protein reabsorption and is synergistically enhanced by concurrent liver injury. Journal of Pathology, 2021, 255, 362-373.	4.5	6
126	Adenosine enhances neuronal damage during deprivation of oxygen and glucose in guinea pig superior collicular slices. Neuroscience Letters, 1994, 182, 283-286.	2.1	5

#	Article	IF	CITATIONS
127	Therapeutic potential of d-cysteine against in vitro and in vivo models of spinocerebellar ataxia. Experimental Neurology, 2021, 343, 113791.	4.1	5
128	Potential Usefulness of D2R Reporter Gene Imaging by IBF as Gene Therapy Monitoring for Cerebellar Neurodegenerative Diseases. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 434-440.	4.3	4
129	Loss-of-function mutation of c-Ret causes cerebellar hypoplasia in mice with Hirschsprung disease and Down's syndrome. Journal of Biological Chemistry, 2021, 296, 100389.	3.4	4
130	Development of novel potent ligands for <scp>GPR85</scp> , an orphan G proteinâ€coupled receptor expressed in the brain. Genes To Cells, 2022, 27, 345-355.	1.2	4
131	Progress in transduction of cerebellar Purkinje cells in vivo using viral vectors. Cerebellum, 2008, 7, 1-6.	2.5	3
132	The contribution of PKA to the excitatory mechanism of adenosine in guinea pig superior colliculus slices. Neuroscience Letters, 1994, 182, 33-36.	2.1	2
133	Protocol for BATTLE-1EX: A High-Resolution Imaging Method to Visualize Whole Synaptic Structures and their Components in the Nervous System. STAR Protocols, 2020, 1, 100166.	1.2	2
134	Masao Itoâ€"A Visionary Neuroscientist with a Passion for the Cerebellum. Neuroscience, 2021, 462, 1-3.	2.3	2
135	Regulation of Phosphatidylcholine Biosynthesis by mGluR1α Expressed in Human Embryonic Kidney 293 Cells— A 31P-NMR Study. Molecular and Cellular Neurosciences, 1999, 14, 444-454.	2,2	1
136	Recent Developments in Gene Therapy Research Targeted to Cerebellar Disorders. , 2011, , .		1
137	The Ser19Stop single nucleotide polymorphism (SNP) of human PHYHIPL affects the cerebellum in mice. Molecular Brain, 2021, 14, 52.	2.6	1
138	A Case of Dermatofibrosarcoma Protuberans with Bronchial Submucosal Metastasis Japanese Journal of Lung Cancer, 1992, 32, 89-94.	0.1	0
139	Antibody Against a Putative Ligand-Binding Site Reveals Delta2 Glutamate Receptor Function. Annals of the New York Academy of Sciences, 2002, 978, 519-519.	3.8	O
140	Adaptive Local Thresholding for Co-Localization Detection in Multi-Channel Fluorescence Microscopic Images. IEICE Transactions on Information and Systems, 2016, E99.D, 2851-2855.	0.7	0
141	ãf¬ãf³ãfã,¦ã,¤f«ã,¹ãf™ã,⁻ã,¿ãf¼ã,'用ã,ãŸè"Šé«"å°è"³å‱性症ã®é³ä¼åæ²»ç™,. Kitakanto Medical Journal	, 200 8, 58	3 ,6 25-326
142	Exercise Differentially Affects Cerebellar Cytotoxic Microglia in Spinocerebellar Ataxia Model Mice. Kitakanto Medical Journal, 2013, 63, 209-215.	0.0	0
143	Gabaergic System Modulates the Formation of LTP (Long-Term Potentiation) in the Superior Colliculus. , 1996, , 209-220.		0
144	Establishment of World Premier Viral Vector Core. Kitakanto Medical Journal, 2020, 70, 277-279.	0.0	0

#	Article	lF	CITATIONS
145	Electrophysiological and Imaging Analysis of GFP-Tagged Protein Kinase C \hat{l}^3 Translocation in Cerebellar Purkinje Cells. Cerebellum, 2022, , 1.	2.5	o
146	D-Cysteine Activates Chaperone-Mediated Autophagy in Cerebellar Purkinje Cells via the Generation of Hydrogen Sulfide and Nrf2 Activation. Cells, 2022, 11, 1230.	4.1	0