Yongyan Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/274016/publications.pdf

Version: 2024-02-01

		1307594	1372567	
10	494	7	10	
papers	citations	h-index	g-index	
10	10	10	074	
10	10	10	874	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	OsmiR396d Affects Gibberellin and Brassinosteroid Signaling to Regulate Plant Architecture in Rice. Plant Physiology, 2018, 176, 946-959.	4.8	127
2	Knockdown of OsPAO and OsRCCR1 cause different plant death phenotypes in rice. Journal of Plant Physiology, 2011, 168, 1952-1959.	3. 5	82
3	OsNSUN2-Mediated 5-Methylcytosine mRNA Modification Enhances Rice Adaptation to High Temperature. Developmental Cell, 2020, 53, 272-286.e7.	7.0	81
4	The Stay-Green Rice like (SGRL) gene regulates chlorophyll degradation in rice. Journal of Plant Physiology, 2013, 170, 1367-1373.	3 . 5	72
5	Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials. Science Advances, 2020, 6, eabc5237.	10.3	61
6	The Temperature-Dependent Retention of Introns in GPI8 Transcripts Contributes to a Drooping and Fragile Shoot Phenotype in Rice. International Journal of Molecular Sciences, 2020, 21, 299.	4.1	41
7	OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice. Journal of Plant Physiology, 2021, 260, 153406.	3.5	16
8	Isoforms of GBSSI and SSII in Four Legumes and Their Phylogenetic Relationship to Their Orthologs from Other Angiosperms. Journal of Molecular Evolution, 2009, 69, 625-634.	1.8	7
9	The <scp>methylâ€CpG</scp> â€binding domain family member <scp>PEM1</scp> is essential for Ubisch body formation and pollen exine development in rice. Plant Journal, 2022, 111, 1283-1295.	5.7	4
10	A Cyclophilin OsCYP20–2 Interacts with OsSYF2 to Regulate Grain Length by Pre-mRNA Splicing. Rice, 2020, 13, 64.	4.0	3