
Lisa E. Freed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2740007/publications.pdf Version: 2024-02-01

LISA F FREED

#	Article	IF	CITATIONS
1	Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
2	Acquisition of Surface EMG Using Flexible and Low-Profile Electrodes for Lower Extremity Neuroprosthetic Control. IEEE Transactions on Medical Robotics and Bionics, 2021, 3, 563-572.	2.1	10
3	Flexible Dry Electrodes for EMG Acquisition within Lower Extremity Prosthetic Sockets. , 2020, 2020, 1088-1095.		12
4	A heat-stable microparticle platform for oral micronutrient delivery. Science Translational Medicine, 2019, 11, .	5.8	20
5	Chondrogenic, hypertrophic, and osteochondral differentiation of human mesenchymal stem cells on threeâ€dimensionally woven scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1453-1465.	1.3	21
6	Multiâ€Material Tissue Engineering Scaffold with Hierarchical Pore Architecture. Advanced Functional Materials, 2016, 26, 5873-5883.	7.8	33
7	Poly(Limonene Thioether) Scaffold for Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 813-821.	3.9	17
8	Scalable Units for Building Cardiac Tissue. Advanced Materials, 2014, 26, 7202-7208.	11.1	31
9	Engineering Functional Tissues. , 2014, , 237-259.		4
10	Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development. Experimental Cell Research, 2014, 321, 297-306.	1.2	39
11	Tissue: Scalable Units for Building Cardiac Tissue (Adv. Mater. 42/2014). Advanced Materials, 2014, 26, 7134-7134.	11.1	0
12	Scaffolds: 3D Structural Patterns in Scalable, Elastomeric Scaffolds Guide Engineered Tissue Architecture (Adv. Mater. 32/2013). Advanced Materials, 2013, 25, 4378-4378.	11.1	0
13	Three-Dimensional Elastomeric Scaffolds Designed with Cardiac-Mimetic Structural and Mechanical Features. Tissue Engineering - Part A, 2013, 19, 793-807.	1.6	59
14	A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials, 2013, 34, 10007-10015.	5.7	57
15	3D Structural Patterns in Scalable, Elastomeric Scaffolds Guide Engineered Tissue Architecture. Advanced Materials, 2013, 25, 4459-4465.	11.1	93
16	The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Biomaterials, 2011, 32, 1856-1864.	5.7	74
17	Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds. Macromolecular Bioscience, 2010, 10, 1330-1337.	2.1	66
18	In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(É›-caprolactone) scaffolds. Biomaterials, 2010, 31, 2193-2200.	5.7	107

Lisa E. Freed

#	Article	IF	CITATIONS
19	Chondrogenesis and Mineralization During <i>In Vitro</i> Culture of Human Mesenchymal Stem Cells on Three-Dimensional Woven Scaffolds. Tissue Engineering - Part A, 2010, 16, 3709-3718.	1.6	79
20	Insulin-like Growth Factor-I and Slow, Bi-directional Perfusion Enhance the Formation of Tissue-Engineered Cardiac Grafts. Tissue Engineering - Part A, 2009, 15, 645-653.	1.6	48
21	Encapsulated Pheochromocytoma Cells Secrete Potent Noncatecholamine Factors. Tissue Engineering - Part A, 2009, 15, 1719-1728.	1.6	0
22	Advanced Material Strategies for Tissue Engineering Scaffolds. Advanced Materials, 2009, 21, 3410-3418.	11.1	187
23	Preâ€treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue. Journal of Biomedical Materials Research - Part A, 2008, 86A, 713-724.	2.1	166
24	Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nature Materials, 2008, 7, 1003-1010.	13.3	760
25	Effects of chondrogenic and osteogenic regulatory factors on composite constructs grown using human mesenchymal stem cells, silk scaffolds and bioreactors. Journal of the Royal Society Interface, 2008, 5, 929-939.	1.5	57
26	Co-culture induces alignment in engineered cardiac constructs via MMP-2 expression. Biochemical and Biophysical Research Communications, 2008, 373, 360-365.	1.0	43
27	Effects of Regulatory Factors on Engineered Cardiac Tissue <i>In Vitro</i> . Tissue Engineering, 2007, 13, 2709-2719.	4.9	26
28	Engineering Functional Tissues. , 2007, , 137-153.		10
29	A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials, 2007, 6, 162-167.	13.3	672
30	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, 12, 2077-2091.	4.9	296
31	Advanced Tools for Tissue Engineering: Scaffolds, Bioreactors, and Signaling. Tissue Engineering, 2006, 12, 3285-3305.	4.9	255
32	Bone and cartilage tissue constructs grown using human bone marrow stromal cells, silk scaffolds and rotating bioreactors. Biomaterials, 2006, 27, 6138-6149.	5.7	171
33	Biomimetic Approach to Cardiac Tissue Engineering: Oxygen Carriers and Channeled Scaffolds. Tissue Engineering, 2006, .	4.9	0
34	Development and remodeling of engineered cartilage-explant composites in vitro and in vivo. Osteoarthritis and Cartilage, 2005, 13, 896-905.	0.6	35
35	Mechanical Properties and Remodeling of Hybrid Cardiac Constructs Made from Heart Cells, Fibrin, and Biodegradable, Elastomeric Knitted Fabric. Tissue Engineering, 2005, 11, 1122-1132.	4.9	120
36	Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18129-18134.	3.3	831

LISA E. FREED

#	Article	IF	CITATIONS
37	Medium perfusion enables engineering of compact and contractile cardiac tissue. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H507-H516.	1.5	296
38	High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnology and Bioengineering, 2003, 82, 403-414.	1.7	268
39	Cultivation in Rotating Bioreactors Promotes Maintenance of Cardiac Myocyte Electrophysiology and Molecular Properties. Tissue Engineering, 2003, 9, 1243-1253.	4.9	96
40	Engineering Functional Cartilage and Cardiac Tissue: In vitro Culture Parameters. , 2003, , 360-376.		2
41	Gene Transfer of a Human Insulin-Like Growth Factor I cDNA Enhances Tissue Engineering of Cartilage. Human Gene Therapy, 2002, 13, 1621-1630.	1.4	86
42	Differential Effects of Growth Factors on Tissue-Engineered Cartilage. Tissue Engineering, 2002, 8, 73-84.	4.9	190
43	Spaceflight bioreactor studies of cells and tissues. Advances in Space Biology and Medicine, 2002, 8, 177-195.	0.5	45
44	Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB Journal, 2002, 16, 1691-1694.	0.2	207
45	Tissue-engineered composites for the repair of large osteochondral defects. Arthritis and Rheumatism, 2002, 46, 2524-2534.	6.7	295
46	Effects of oxygen on engineered cardiac muscle. Biotechnology and Bioengineering, 2002, 78, 617-625.	1.7	130
47	Microgravity Studies of Cells and Tissues. Annals of the New York Academy of Sciences, 2002, 974, 504-517.	1.8	51
48	Perfusion Improves Tissue Architecture of Engineered Cardiac Muscle. Tissue Engineering, 2002, 8, 175-188.	4.9	308
49	Culture Environments. , 2002, , 97-111.		4
50	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. Journal of Biomedical Materials Research Part B, 2001, 55, 229-235.	3.0	139
51	Selective differentiation of mammalian bone marrow stromal cells cultured on three-dimensional polymer foams. , 2001, 55, 229.		20
52	TISSUE ENGINEERING BIOREACTORS. , 2000, , 143-156.		95
53	Microgravity studies on cells and tissues: From Mir to the ISS. , 1999, , .		1
54	Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage. Annals of Biomedical Engineering, 1999, 27, 656-662.	1.3	151

Lisa E. Freed

#	Article	IF	CITATIONS
55	Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. , 1999, 63, 197-205.		202
56	Cardiac tissue engineering: Cell seeding, cultivation parameters, and tissue construct characterization. Biotechnology and Bioengineering, 1999, 64, 580-589.	1.7	473
57	Frontiers in Tissue Engineering. Clinical Orthopaedics and Related Research, 1999, 367, S46-S58.	0.7	131
58	Dynamic Cell Seeding of Polymer Scaffolds for Cartilage Tissue Engineering. Biotechnology Progress, 1998, 14, 193-202.	1.3	490
59	Culture of organized cell communities. Advanced Drug Delivery Reviews, 1998, 33, 15-30.	6.6	236
60	In vitro differentiation of chick embryo bone marrow stromal cells into cartilaginous and bone-like tissues. Journal of Orthopaedic Research, 1998, 16, 181-189.	1.2	142
61	Mechanical Forces And Growth Factors Utilized In Tissue Engineering. , 1998, , 61-82.		11
62	Microgravity tissue engineering. In Vitro Cellular and Developmental Biology - Animal, 1997, 33, 381-385.	0.7	181
63	Tissue Engineering: Biomedical Applications. Tissue Engineering, 1995, 1, 151-161.	4.9	135
64	Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture. Biomaterials, 1994, 15, 55-58.	5.7	385
65	Biodegradable Polymer Scaffolds for Tissue Engineering. Nature Biotechnology, 1994, 12, 689-693.	9.4	921