
## shimon weiss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2739858/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Membrane potential sensing: Material design and method development for single particle optical electrophysiology. Journal of Chemical Physics, 2022, 156, 084201.              | 3.0  | 2         |
| 2  | Multi-parameter photon-by-photon hidden Markov modeling. Nature Communications, 2022, 13, 1000.                                                                                | 12.8 | 18        |
| 3  | PySOFI: an open source Python package for SOFI. Biophysical Reports, 2022, 2, 100052.                                                                                          | 1.2  | 1         |
| 4  | In vitro and in vivo NIR fluorescence lifetime imaging with a time-gated SPAD camera. Optica, 2022, 9, 532.                                                                    | 9.3  | 15        |
| 5  | Statistical parametrization of cell cytoskeleton reveals lung cancer cytoskeletal phenotype with partial EMT signature. Communications Biology, 2022, 5, 407.                  | 4.4  | 8         |
| 6  | Super-resolution Imaging of Plasmonic Near-Fields: Overcoming Emitter Mislocalizations. Journal of<br>Physical Chemistry Letters, 2022, 13, 4520-4529.                         | 4.6  | 2         |
| 7  | Electrically controlling and optically observing the membrane potential of supported lipid bilayers.<br>Biophysical Journal, 2022, 121, 2624-2637.                             | 0.5  | 3         |
| 8  | FRET-based dynamic structural biology: Challenges, perspectives and an appeal for open-science practices. ELife, 2021, 10, .                                                   | 6.0  | 152       |
| 9  | Weak Electromagnetic Fields Accelerate Fusion of Myoblasts. International Journal of Molecular<br>Sciences, 2021, 22, 4407.                                                    | 4.1  | 0         |
| 10 | Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. Science Advances, 2021, 7, .                                | 10.3 | 14        |
| 11 | Subunit cooperation in the Get1/2 receptor promotes tail-anchored membrane protein insertion.<br>Journal of Cell Biology, 2021, 220, .                                         | 5.2  | 2         |
| 12 | Optical probing of local membrane potential with fluorescent polystyrene beads. Biophysical Reports, 2021, 1, 100030.                                                          | 1.2  | 2         |
| 13 | Single-Photon, Time-Gated, Phasor-Based Fluorescence Lifetime Imaging through Highly Scattering<br>Medium. ACS Photonics, 2020, 7, 68-79.                                      | 6.6  | 14        |
| 14 | Wide-field time-gated SPAD imager for phasor-based FLIM applications. Methods and Applications in Fluorescence, 2020, 8, 024002.                                               | 2.3  | 50        |
| 15 | Development of Lipid-Coated Semiconductor Nanosensors for Recording of Membrane Potential in Neurons. ACS Photonics, 2020, 7, 1141-1152.                                       | 6.6  | 11        |
| 16 | Cusp-artifacts in high order superresolution optical fluctuation imaging. Biomedical Optics Express, 2020, 11, 554.                                                            | 2.9  | 15        |
| 17 | Improved Surface Functionalization and Characterization of Membrane-Targeted Semiconductor<br>Voltage Nanosensors. Journal of Physical Chemistry Letters, 2019, 10, 3906-3913. | 4.6  | 12        |
| 18 | Interfacing the Cell with "Biomimetic Membrane Proteins― Small, 2019, 15, e1903006.                                                                                            | 10.0 | 7         |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The effect of macromolecular crowding on single-round transcription by <i>Escherichia coli</i> RNA polymerase. Nucleic Acids Research, 2019, 47, 1440-1450.                                                                                       | 14.5 | 26        |
| 20 | A 512 × 512 SPAD Image Sensor With Integrated Gating for Widefield FLIM. IEEE Journal of Selected<br>Topics in Quantum Electronics, 2019, 25, 1-12.                                                                                               | 2.9  | 109       |
| 21 | Ratiometric widefield imaging with spectrally balanced detection. Biomedical Optics Express, 2019, 10, 5385.                                                                                                                                      | 2.9  | Ο         |
| 22 | Toward dynamic structural biology: Two decades of single-molecule Förster resonance energy<br>transfer. Science, 2018, 359, .                                                                                                                     | 12.6 | 414       |
| 23 | 48-spot single-molecule FRET setup with periodic acceptor excitation. Journal of Chemical Physics, 2018, 148, 123304.                                                                                                                             | 3.0  | 12        |
| 24 | Membrane insertion of—and membrane potential sensing by—semiconductor voltage nanosensors:<br>Feasibility demonstration. Science Advances, 2018, 4, e1601453.                                                                                     | 10.3 | 33        |
| 25 | Characterizing highly dynamic conformational states: The transcription bubble in RNAP-promoter open complex as an example. Journal of Chemical Physics, 2018, 148, 123315.                                                                        | 3.0  | 29        |
| 26 | Monte Carlo Diffusion-Enhanced Photon Inference: Distance Distributions and Conformational<br>Dynamics in Single-Molecule FRET. Journal of Physical Chemistry B, 2018, 122, 11598-11615.                                                          | 2.6  | 17        |
| 27 | Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology. ACS Photonics, 2018, 5, 4788-4800.                                                                             | 6.6  | 30        |
| 28 | Sequential activation of human signal recognition particle by the ribosome and signal sequence<br>drives efficient protein targeting. Proceedings of the National Academy of Sciences of the United<br>States of America, 2018, 115, E5487-E5496. | 7.1  | 21        |
| 29 | Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect. ACS Photonics, 2018, 5, 2860-2867.                                                                                                                              | 6.6  | 22        |
| 30 | Design Rules for Membrane-Embedded Voltage-Sensing Nanoparticles. Biophysical Journal, 2017, 112,<br>703-713.                                                                                                                                     | 0.5  | 28        |
| 31 | Studying transcription initiation by RNA polymerase with diffusionâ€based singleâ€molecule<br>fluorescence. Protein Science, 2017, 26, 1278-1290.                                                                                                 | 7.6  | 13        |
| 32 | Different types of pausing modes during transcription initiation. Transcription, 2017, 8, 242-253.                                                                                                                                                | 3.1  | 16        |
| 33 | Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules. PLoS ONE, 2017, 12, e0175766.                                                                                                                             | 2.5  | 27        |
| 34 | A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement–Förster-Type<br>Resonance Energy Transfer (PIFE-FRET). Journal of Physical Chemistry B, 2016, 120, 6401-6410.                                                   | 2.6  | 60        |
| 35 | Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments.<br>Biophysical Journal, 2016, 110, 26-33.                                                                                                          | 0.5  | 45        |
| 36 | Characterization of Porous Materials by Fluorescence Correlation Spectroscopy Super-resolution Optical Fluctuation Imaging. ACS Nano, 2015, 9, 9158-9166.                                                                                         | 14.6 | 80        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency. Chemistry and Biology, 2015, 22, 793-802.                                                                                                     | 6.0  | 11        |
| 38 | Processing of microRNA primary transcripts requires heme in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1861-1866.                                                                     | 7.1  | 69        |
| 39 | Toward Single-Molecule Optical Mapping of the Epigenome. ACS Nano, 2014, 8, 14-26.                                                                                                                                                                      | 14.6 | 42        |
| 40 | The Transcription Bubble of the RNA Polymerase–Promoter Open Complex Exhibits Conformational<br>Heterogeneity and Millisecond-Scale Dynamics: Implications for Transcription Start-Site Selection.<br>Journal of Molecular Biology, 2013, 425, 875-885. | 4.2  | 77        |
| 41 | Labeling Cytosolic Targets in Live Cells with Blinking Probes. Journal of Physical Chemistry Letters, 2013, 4, 2138-2146.                                                                                                                               | 4.6  | 24        |
| 42 | Single molecule quantum-confined Stark effect measurements of semiconductor nanoparticles at room temperature. , 2013, , .                                                                                                                              |      | 1         |
| 43 | A Bis(phosphine)-Modified Peptide Ligand for Stable and Luminescent Quantum Dots in Aqueous Media.<br>Synthesis, 2013, 45, 2426-2430.                                                                                                                   | 2.3  | 5         |
| 44 | Development of new photon-counting detectors for single-molecule fluorescence microscopy.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120035.                                                               | 4.0  | 100       |
| 45 | Advances in superresolution optical fluctuation imaging (SOFI). Quarterly Reviews of Biophysics, 2013, 46, 210-221.                                                                                                                                     | 5.7  | 49        |
| 46 | Phasor imaging with a widefield photon-counting detector. Journal of Biomedical Optics, 2012, 17, 016008.                                                                                                                                               | 2.6  | 38        |
| 47 | Four-Color Alternating-Laser Excitation Single-Molecule Fluorescence Spectroscopy for Next-Generation Biodetection Assays. Clinical Chemistry, 2012, 58, 707-716.                                                                                       | 3.2  | 26        |
| 48 | Single Molecule Quantum-Confined Stark Effect Measurements of Semiconductor Nanoparticles at<br>Room Temperature. ACS Nano, 2012, 6, 10013-10023.                                                                                                       | 14.6 | 111       |
| 49 | Spatiotemporal manipulation of retinoic acid activity in zebrafish hindbrain development via photo-isomerization. Development (Cambridge), 2012, 139, 3355-3362.                                                                                        | 2.5  | 12        |
| 50 | Nanoblade Delivery and Incorporation of Quantum Dot Conjugates into Tubulin Networks in Live<br>Cells. Nano Letters, 2012, 12, 5669-5672.                                                                                                               | 9.1  | 39        |
| 51 | Stable, Compact, Bright Biofunctional Quantum Dots with Improved Peptide Coating. Journal of<br>Physical Chemistry B, 2012, 116, 11370-11378.                                                                                                           | 2.6  | 30        |
| 52 | Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment. Journal of the American Chemical Society, 2012, 134, 12565-12577.                                                                            | 13.7 | 132       |
| 53 | Opening and Closing of the Bacterial RNA Polymerase Clamp. Science, 2012, 337, 591-595.                                                                                                                                                                 | 12.6 | 210       |
| 54 | Enzymatically Incorporated Genomic Tags for Optical Mapping of DNAâ€Binding Proteins. Angewandte<br>Chemie - International Edition, 2012, 51, 3578-3581.                                                                                                | 13.8 | 40        |

| #  | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | High-throughput single-molecule optofluidic analysis. Nature Methods, 2011, 8, 242-245.                                                                                                                                                                  | 19.0 | 95        |
| 56 | Aromatic Aldehyde and Hydrazine Activated Peptide Coated Quantum Dots for Easy Bioconjugation and<br>Live Cell Imaging. Bioconjugate Chemistry, 2011, 22, 1006-1011.                                                                                     | 3.6  | 36        |
| 57 | Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD. Proceedings of SPIE, 2011, 7905, .                                                                                                                                            | 0.8  | 27        |
| 58 | Superresolution Optical Fluctuation Imaging with Organic Dyes. Angewandte Chemie - International Edition, 2010, 49, 9441-9443.                                                                                                                           | 13.8 | 88        |
| 59 | High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array. Biomedical Optics<br>Express, 2010, 1, 1408.                                                                                                                          | 2.9  | 74        |
| 60 | Achieving increased resolution and more pixels with Superresolution Optical Fluctuation Imaging (SOFI). Optics Express, 2010, 18, 18875.                                                                                                                 | 3.4  | 187       |
| 61 | Tracking Single Proteins in Live Cells Using Single-Chain Antibody Fragment-Fluorescent Quantum Dot<br>Affinity Pair. Methods in Enzymology, 2010, 475, 61-79.                                                                                           | 1.0  | 4         |
| 62 | Phasor-based single-molecule fluorescence lifetime imaging using a wide-field photon-counting detector. , 2009, 7185, .                                                                                                                                  |      | 15        |
| 63 | Adsorbate-induced absorption redshift in an organic-inorganic cluster conjugate: Electronic effects of surfactants and organic adsorbates on the lowest excited states of a methanethiol-CdSe conjugate. Journal of Chemical Physics, 2009, 131, 174705. | 3.0  | 24        |
| 64 | Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22287-22292.                                                                  | 7.1  | 942       |
| 65 | Quantum Dots for In Vivo Small-Animal Imaging. Journal of Nuclear Medicine, 2009, 50, 493-496.                                                                                                                                                           | 5.0  | 167       |
| 66 | Combining atomic force and fluorescence microscopy for analysis of quantumâ€dot labeled<br>protein–DNA complexes. Journal of Molecular Recognition, 2009, 22, 397-402.                                                                                   | 2.1  | 23        |
| 67 | Particle Size, Surface Coating, and PEGylation Influence the Biodistribution of Quantum Dots in Living<br>Mice. Small, 2009, 5, 126-134.                                                                                                                 | 10.0 | 418       |
| 68 | Dynamic Partitioning of a Glycosylâ€Phosphatidylinositolâ€Anchored Protein in Glycosphingolipidâ€Rich<br>Microdomains Imaged by Singleâ€Quantum Dot Tracking. Traffic, 2009, 10, 691-712.                                                                | 2.7  | 153       |
| 69 | Lighting Up Individual DNA Binding Proteins with Quantum Dots. Nano Letters, 2009, 9, 1598-1603.                                                                                                                                                         | 9.1  | 50        |
| 70 | Suppression of Quantum Dot Blinking in DTT-Doped Polymer Films. Journal of Physical Chemistry C,<br>2009, 113, 11541-11545.                                                                                                                              | 3.1  | 35        |
| 71 | Nanometer Distance Measurements between Multicolor Quantum Dots. Nano Letters, 2009, 9,<br>2199-2205.                                                                                                                                                    | 9.1  | 23        |
| 72 | In vivo assembly and single-molecule characterization of the transcription machinery from<br>Shewanella oneidensis MR-1. Protein Expression and Purification, 2009, 65, 66-76.                                                                           | 1.3  | 5         |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Cys-diabody Quantum Dot Conjugates (ImmunoQdots) for Cancer Marker Detection. Bioconjugate<br>Chemistry, 2009, 20, 1474-1481.                                                        | 3.6  | 52        |
| 74 | High Speed Multichannel Charge Sensitive Data Acquisition System With Self-Triggered Event Timing.<br>IEEE Transactions on Nuclear Science, 2009, 56, 1148-1152.                     | 2.0  | 13        |
| 75 | Single-Quantum Dot Imaging with a Photon Counting Camera. Current Pharmaceutical Biotechnology, 2009, 10, 543-557.                                                                   | 1.6  | 36        |
| 76 | Tracking bioâ€molecules in live cells using quantum dots. Journal of Biophotonics, 2008, 1, 287-298.                                                                                 | 2.3  | 112       |
| 77 | Efficient Site-Specific Labeling of Proteins via Cysteines. Bioconjugate Chemistry, 2008, 19, 786-791.                                                                               | 3.6  | 219       |
| 78 | Nonequilibrium Single Molecule Protein Folding in a Coaxial Mixer. Biophysical Journal, 2008, 95,<br>352-365.                                                                        | 0.5  | 46        |
| 79 | Measuring diffusion with polarization-modulation dual-focus fluorescence correlation spectroscopy. Optics Express, 2008, 16, 14609.                                                  | 3.4  | 20        |
| 80 | Hybrid photodetector for single-molecule spectroscopy and microscopy. Proceedings of SPIE, 2008, 6862, .                                                                             | 0.8  | 38        |
| 81 | Single molecule protein folding kinetics in a co-axial microfluidic mixer. , 2008, , .                                                                                               |      | 0         |
| 82 | Ruggedness in the folding landscape of protein L. HFSP Journal, 2008, 2, 388-395.                                                                                                    | 2.5  | 25        |
| 83 | High Affinity scFvâ^'Hapten Pair as a Tool for Quantum Dot Labeling and Tracking of Single Proteins in<br>Live Cells. Nano Letters, 2008, 8, 4618-4623.                              | 9.1  | 34        |
| 84 | Single-molecule FRET reveals sugar-induced conformational dynamics in LacY. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12640-12645. | 7.1  | 144       |
| 85 | Detectors for single-molecule fluorescence imaging and spectroscopy. Journal of Modern Optics, 2007, 54, 239-281.                                                                    | 1.3  | 110       |
| 86 | microPET-Based Biodistribution of Quantum Dots in Living Mice. Journal of Nuclear Medicine, 2007, 48, 1511-1518.                                                                     | 5.0  | 182       |
| 87 | Singlet Oxygen Production by Peptide-Coated Quantum Dotâ^'Photosensitizer Conjugates. Journal of the American Chemical Society, 2007, 129, 6865-6871.                                | 13.7 | 281       |
| 88 | Photobleaching Pathways in Single-Molecule FRET Experiments. Journal of the American Chemical Society, 2007, 129, 4643-4654.                                                         | 13.7 | 90        |
| 89 | Three-Color Alternating-Laser Excitation of Single Molecules: Monitoring Multiple Interactions and Distances. Biophysical Journal, 2007, 92, 303-312.                                | 0.5  | 179       |
| 90 | Solubilization of Quantum Dots with a Recombinant Peptide fromEscherichia coli. Small, 2007, 3, 793-798.                                                                             | 10.0 | 38        |

| #   | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Periodic acceptor excitation spectroscopy of single molecules. European Biophysics Journal, 2007, 36, 669-674.                                                                                                                | 2.2  | 21        |
| 92  | Single-Molecule Fluorescence Studies of Protein Folding and Conformational Dynamics. Chemical Reviews, 2006, 106, 1785-1813.                                                                                                  | 47.7 | 488       |
| 93  | Notice of Violation of IEEE Publication Principles: Peptide coated quantum dots for biological applications. IEEE Transactions on Nanobioscience, 2006, 5, 231-238.                                                           | 3.3  | 16        |
| 94  | Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism. Science, 2006, 314, 1144-1147.                                                                                                           | 12.6 | 400       |
| 95  | Rotational and Translational Diffusion of Peptide-Coated CdSe/CdS/ZnS Nanorods Studied by<br>Fluorescence Correlation Spectroscopy. Journal of the American Chemical Society, 2006, 128, 1639-1647.                           | 13.7 | 117       |
| 96  | Direct Observation of Abortive Initiation and Promoter Escape within Single Immobilized Transcription Complexes. Biophysical Journal, 2006, 90, 1419-1431.                                                                    | 0.5  | 136       |
| 97  | Shot-Noise Limited Single-Molecule FRET Histograms: Comparison between Theory and Experimentsâ€.<br>Journal of Physical Chemistry B, 2006, 110, 22103-22124.                                                                  | 2.6  | 301       |
| 98  | A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy. , 2006, 6092, .                                                                                                      |      | 15        |
| 99  | Fluorescence lifetime microscopy with a time- and space-resolved single-photon counting detector. ,<br>2006, 6372, .                                                                                                          |      | 9         |
| 100 | Development of an ultrafast single photon counting imager for single molecule imaging. , 2006, 6092, 168.                                                                                                                     |      | 5         |
| 101 | Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials, 2006, 27, 1679-1687.                                                                                                                              | 11.4 | 411       |
| 102 | Site-specific labeling of proteins for single-molecule FRET by combining chemical and enzymatic modification. Protein Science, 2006, 15, 640-646.                                                                             | 7.6  | 54        |
| 103 | Single-Step Multicolor Fluorescence In Situ Hybridization Using Semiconductor Quantum Dot-DNA<br>Conjugates. Cell Biochemistry and Biophysics, 2006, 45, 59-70.                                                               | 1.8  | 54        |
| 104 | Photon-counting H33D detector for biological fluorescence imaging. Nuclear Instruments and<br>Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2006, 567, 133-136. | 1.6  | 39        |
| 105 | Near-infrared peptide-coated quantum dots for small animal imaging. , 2006, 6096, 29.                                                                                                                                         |      | 1         |
| 106 | Using photon statistics to boost microscopy resolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4797-4798.                                                                | 7.1  | 44        |
| 107 | Enhancing the photoluminescence of peptide-coated nanocrystals. , 2005, , .                                                                                                                                                   |      | 0         |
|     |                                                                                                                                                                                                                               |      |           |

Peptide-coated semiconductor nanocrystals for biomedical applications. , 2005, 5704, .

5

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy. Chemical Physics, 2005, 318, 82-90.                                                             | 1.9  | 38        |
| 110 | Protein-protein interactions as a tool for site-specific labeling of proteins. Protein Science, 2005, 14, 2059-2068.                                                                                                                          | 7.6  | 40        |
| 111 | Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science, 2005, 307, 538-544.                                                                                                                                                   | 12.6 | 7,371     |
| 112 | Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17348-17353.                                      | 7.1  | 219       |
| 113 | Enhancing the Photoluminescence of Peptide-Coated Nanocrystals with Shell Composition and UV<br>Irradiation. Journal of Physical Chemistry B, 2005, 109, 1669-1674.                                                                           | 2.6  | 57        |
| 114 | Alternating-Laser Excitation of Single Molecules. Accounts of Chemical Research, 2005, 38, 523-533.                                                                                                                                           | 15.6 | 335       |
| 115 | Retention of Transcription Initiation Factor σ70 in Transcription Elongation: Single-Molecule Analysis.<br>Molecular Cell, 2005, 20, 347-356.                                                                                                 | 9.7  | 132       |
| 116 | Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation.<br>Biophysical Journal, 2005, 88, 2939-2953.                                                                                              | 0.5  | 440       |
| 117 | Comparison of Photophysical and Colloidal Properties of Biocompatible Semiconductor Nanocrystals<br>Using Fluorescence Correlation Spectroscopy. Analytical Chemistry, 2005, 77, 2235-2242.                                                   | 6.5  | 115       |
| 118 | Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser<br>excitation of single molecules. Proceedings of the National Academy of Sciences of the United States<br>of America, 2004, 101, 8936-8941. | 7.1  | 597       |
| 119 | Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals.<br>Journal of the American Chemical Society, 2004, 126, 1926-1927.                                                                               | 13.7 | 154       |
| 120 | Photon Arrival-Time Interval Distribution (PAID):Â A Novel Tool for Analyzing Molecular Interactions.<br>Journal of Physical Chemistry B, 2004, 108, 3051-3067.                                                                               | 2.6  | 65        |
| 121 | Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding. Analytical Chemistry, 2004, 76, 7169-7178.                                                                                                                                | 6.5  | 138       |
| 122 | Enhanced Absorption Induced by a Metallic Nanoshell. Nano Letters, 2004, 4, 85-88.                                                                                                                                                            | 9.1  | 78        |
| 123 | Bioactivation and Cell Targeting of Semiconductor CdSe/ZnS Nanocrystals with<br>Phytochelatin-Related Peptides. Journal of the American Chemical Society, 2004, 126, 6115-6123.                                                               | 13.7 | 564       |
| 124 | The Power and Prospects of Fluorescence Microscopies and Spectroscopies. Annual Review of Biophysics and Biomolecular Structure, 2003, 32, 161-182.                                                                                           | 18.3 | 198       |
| 125 | A Rugged Energy Landscape Mechanism for Trapping of Transmembrane Receptors during Endocytosisâ€.<br>Biochemistry, 2003, 42, 2916-2925.                                                                                                       | 2.5  | 24        |
| 126 | ANALYTICAL CHEMISTRY: How to Detect Weak Pairs. Science, 2003, 299, 667-668.                                                                                                                                                                  | 12.6 | 54        |

| #   | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules. Journal of Chemical Physics, 2002, 117, 10953-10964.                                                                                            | 3.0  | 147       |
| 128 | Single-molecule spectroscopy and microscopy. Comptes Rendus Physique, 2002, 3, 619-644.                                                                                                                                                                      | 0.9  | 61        |
| 129 | Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor<br>Quantum Dots. Journal of Physical Chemistry B, 2001, 105, 8861-8871.                                                                                         | 2.6  | 1,221     |
| 130 | RATIOMETRICSINGLE-MOLECULESTUDIES OFFREELYDIFFUSINGBIOMOLECULES. Annual Review of Physical Chemistry, 2001, 52, 233-253.                                                                                                                                     | 10.8 | 195       |
| 131 | Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001, 26, 825.                                                                                                                                                               | 3.3  | 332       |
| 132 | Ultrahigh-Resolution Colocalization of Spectrally Separable Point-like Fluorescent Probes. Methods, 2001, 25, 87-102.                                                                                                                                        | 3.8  | 63        |
| 133 | Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling.<br>Single Molecules, 2001, 2, 261-276.                                                                                                                    | 0.9  | 365       |
| 134 | Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. ,<br>2000, 7, 724-729.                                                                                                                                       |      | 641       |
| 135 | Shattering the diffraction limit of light: A revolution in fluorescence microscopy?. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 8747-8749.                                                                   | 7.1  | 45        |
| 136 | Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proceedings of the<br>National Academy of Sciences of the United States of America, 2000, 97, 9461-9466.                                                                        | 7.1  | 304       |
| 137 | Single-molecule protein folding: Diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5179-5184.             | 7.1  | 440       |
| 138 | Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage<br>mechanism. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96,<br>893-898.                                                | 7.1  | 511       |
| 139 | Ratiometric measurement and identification of single diffusing molecules. Chemical Physics, 1999, 247, 85-106.                                                                                                                                               | 1.9  | 155       |
| 140 | Temporal fluctuations of fluorescence resonance energy transfer between two dyes conjugated to a single protein. Chemical Physics, 1999, 247, 107-118.                                                                                                       | 1.9  | 97        |
| 141 | Polarization Spectroscopy of Single Fluorescent Molecules. Journal of Physical Chemistry B, 1999, 103, 6839-6850.                                                                                                                                            | 2.6  | 251       |
| 142 | Evidence for a thermal contribution to emission intermittency in single CdSe/CdS core/shell nanocrystals. Journal of Chemical Physics, 1999, 110, 1195-1201.                                                                                                 | 3.0  | 214       |
| 143 | Single-pair fluorescence resonance energy transfer on freely diffusing molecules: Observation of<br>Forster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of<br>the United States of America, 1999, 96, 3670-3675. | 7.1  | 525       |
| 144 | Fluorescence Spectroscopy of Single Biomolecules. Science, 1999, 283, 1676-1683.                                                                                                                                                                             | 12.6 | 1,926     |

| #   | Article                                                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Near-field fluorescence microscopy of cells. Ultramicroscopy, 1998, 71, 303-309.                                                                                                                                                                                                                      | 1.9  | 49        |
| 146 | Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 1998, 281, 2013-2016.                                                                                                                                                                                                           | 12.6 | 7,948     |
| 147 | Hindered Rotational Diffusion and Rotational Jumps of Single Molecules. Physical Review Letters, 1998, 80, 2093-2096.                                                                                                                                                                                 | 7.8  | 179       |
| 148 | Single molecule spectroscopy with automated positioning. Applied Physics Letters, 1997, 70, 782-784.                                                                                                                                                                                                  | 3.3  | 32        |
| 149 | Membrane specific mapping and colocalization of malarial and host skeletal proteins in the<br>Plasmodium falciparum infected erythrocyte by dual-color near-field scanning optical microscopy.<br>Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 520-525. | 7.1  | 133       |
| 150 | Quantum jumps of single molecules at room temperature. Chemical Physics Letters, 1997, 271, 1-5.                                                                                                                                                                                                      | 2.6  | 160       |
| 151 | Dual-molecule spectroscopy: molecular rulers for the study of biological macromolecules. IEEE<br>Journal of Selected Topics in Quantum Electronics, 1996, 2, 1115-1128.                                                                                                                               | 2.9  | 39        |
| 152 | Probing the interaction between two single molecules: fluorescence resonance energy transfer<br>between a single donor and a single acceptor Proceedings of the National Academy of Sciences of the<br>United States of America, 1996, 93, 6264-6268.                                                 | 7.1  | 1,139     |
| 153 | Advances in ultrafast scanning tunneling microscopy. Applied Physics Letters, 1996, 69, 1321-1323.                                                                                                                                                                                                    | 3.3  | 49        |
| 154 | Single Molecule Dynamics Studied by Polarization Modulation. Physical Review Letters, 1996, 77, 3979-3982.                                                                                                                                                                                            | 7.8  | 333       |
| 155 | The ultrafast response of a scanning tunneling microscope. Physica Status Solidi (B): Basic Research,<br>1995, 188, 343-359.                                                                                                                                                                          | 1.5  | 47        |
| 156 | Design consideration in an ultrafast scanning tunneling microscope. Review of Scientific Instruments, 1995, 66, 4130-4134.                                                                                                                                                                            | 1.3  | 14        |
| 157 | Period doubling and quasi-periodicity in additive-pulse mode-locked lasers. Optics Letters, 1995, 20, 1794.                                                                                                                                                                                           | 3.3  | 52        |
| 158 | Ultrafast dynamics of the optical mode of a 1.5 μm multiple quantum well optical amplifier. Applied<br>Physics Letters, 1994, 64, 2861-2863.                                                                                                                                                          | 3.3  | 5         |
| 159 | Ultrafast phase dynamics of coherent emission from excitons in GaAs quantum wells. Physical Review<br>B, 1994, 50, 8439-8453.                                                                                                                                                                         | 3.2  | 78        |
| 160 | Carrier transport effects and dynamics in multiple quantum well optical amplifiers. Optical and Quantum Electronics, 1994, 26, S731-S756.                                                                                                                                                             | 3.3  | 7         |
| 161 | Instantaneous frequency dynamics of coherent wave mixing in semiconductor quantum wells.<br>Physical Review Letters, 1993, 70, 3307-3310.                                                                                                                                                             | 7.8  | 86        |
| 162 | Ultrafast scanning probe microscopy. Applied Physics Letters, 1993, 63, 2567-2569.                                                                                                                                                                                                                    | 3.3  | 137       |

| #   | ARTICLE                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Carrier capture times in 1.5 μm multiple quantum well optical amplifiers. Applied Physics Letters, 1992,<br>60, 9-11.                                                   | 3.3 | 83        |
| 164 | Femtosecond timeâ€resolved freeâ€induction decay of roomâ€temperature excitons in GaAs quantum wells.<br>Applied Physics Letters, 1992, 60, 2666-2668.                  | 3.3 | 30        |
| 165 | Collective effects in excitonic free induction decay: Do semiconductors and atoms emit coherent light in different ways?. Physical Review Letters, 1992, 69, 2685-2688. | 7.8 | 170       |
| 166 | Ultrafast gain dynamics in 1.5 μm multiple quantum well optical amplifiers. Applied Physics Letters, 1991,<br>58, 158-160.                                              | 3.3 | 74        |
| 167 | Photorefractive saturable absorptive and dispersive optical bistability. Optics Communications, 1989, 70, 515-521.                                                      | 2.1 | 15        |
| 168 | Analysis of coupled photorefractive wave mixing junctions. Optics Letters, 1989, 14, 186.                                                                               | 3.3 | 17        |
| 169 | Photorefractive oscillators. IEEE Journal of Quantum Electronics, 1989, 25, 550-569.                                                                                    | 1.9 | 143       |
| 170 | Line narrowing and self frequency scanning of laser diode arrays coupled to a photorefractive oscillator. IEEE Journal of Quantum Electronics, 1988, 24, 706-708.       | 1.9 | 22        |
| 171 | Solvable optimized fourâ€wave mixing configuration with cubic photorefractive crystals. Applied Physics Letters, 1988, 53, 257-259.                                     | 3.3 | 15        |
| 172 | Spatial light modulation and filtering effects in photorefractive wave mixing. Applied Physics Letters, 1987, 50, 483-485.                                              | 3.3 | 29        |
| 173 | Double phase-conjugate mirror: analysis, demonstration, and applications. Optics Letters, 1987, 12, 114.                                                                | 3.3 | 272       |
| 174 | Coupling of diode laser arrays with photorefractive passive phase conjugate mirrors. Applied Physics<br>Letters, 1987, 50, 1397-1399.                                   | 3.3 | 59        |
| 175 | Tunable frequency shift of photorefractive oscillators. Optics Letters, 1986, 11, 165.                                                                                  | 3.3 | 22        |
| 176 | Beam coupling and locking of lasers using photorefractive four-wave mixing. Optics Letters, 1986, 11, 528.                                                              | 3.3 | 115       |
| 177 | Photorefractive oscillation with intracavity image and multimode fiber. Applied Physics Letters, 1986, 48, 1567-1569.                                                   | 3.3 | 13        |