Hamid Reza Bakhsheshi Rad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2739410/publications.pdf

Version: 2024-02-01

146 papers 5,497 citations

43 h-index 64 g-index

146 all docs

146 docs citations

146 times ranked 3940 citing authors

#	Article	IF	CITATIONS
1	Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys. Corrosion Science, 2012, 64, 184-197.	3.0	235
2	Microstructure analysis and corrosion behavior of biodegradable Mg–Ca implant alloys. Materials & Design, 2012, 33, 88-97.	5.1	213
3	Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants, 2020, 9, 1309.	2.2	199
4	Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Materials Science and Engineering C, 2017, 73, 215-219.	3.8	133
5	Development of the PVA/CS nanofibers containing silk protein sericin as a wound dressing: In vitro and in vivo assessment. International Journal of Biological Macromolecules, 2020, 149, 513-521.	3.6	122
6	Hyaluronic Acid (HA)â€Based Silk Fibroin/Zinc Oxide Core–Shell Electrospun Dressing for Burn Wound Management. Macromolecular Bioscience, 2020, 20, e1900328.	2.1	110
7	Electrospun Nano-Fibers for Biomedical and Tissue Engineering Applications: A Comprehensive Review. Materials, 2020, 13, 2153.	1.3	108
8	In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polymer Testing, 2020, 82, 106298.	2.3	107
9	In vitro degradation behavior, antibacterial activity and cytotoxicity of TiO2-MAO/ZnHA composite coating on Mg alloy for orthopedic implants. Surface and Coatings Technology, 2018, 334, 450-460.	2.2	101
10	Synthesis and in vitro degradation evaluation of the nano-HA/MgF2 and DCPD/MgF2 composite coating on biodegradable Mg–Ca–Zn alloy. Surface and Coatings Technology, 2013, 222, 79-89.	2.2	96
11	In-vitro corrosion inhibition mechanism of fluorine-doped hydroxyapatite and brushite coated Mg–Ca alloys for biomedical applications. Ceramics International, 2014, 40, 7971-7982.	2.3	87
12	Deposition of nanostructured fluorine-doped hydroxyapatite–polycaprolactone duplex coating to enhance the mechanical properties and corrosion resistance of Mg alloy for biomedical applications. Materials Science and Engineering C, 2016, 60, 526-537.	3.8	83
13	In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 82, 257-267.	1.5	83
14	In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5Ca–xZn alloy systems. Thermochimica Acta, 2012, 527, 180-189.	1.2	80
15	Co-incorporation of graphene oxide/silver nanoparticle into poly-L-lactic acid fibrous: A route toward the development of cytocompatible and antibacterial coating layer on magnesium implants. Materials Science and Engineering C, 2020, 111, 110812.	3.8	78
16	Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO-Ag nanofiber coatings on biodegradable Mg alloy implants. Ceramics International, 2019, 45, 11883-11892.	2.3	73
17	Coating biodegradable magnesium alloys with electrospun poly-L-lactic acid-Ã¥kermanite-doxycycline nanofibers for enhanced biocompatibility, antibacterial activity, and corrosion resistance. Surface and Coatings Technology, 2019, 377, 124898.	2.2	71
18	Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials, 2020, 13, 4421.	1.3	70

#	Article	IF	CITATIONS
19	Structure, corrosion behavior, and antibacterial properties of nano-silica/graphene oxide coating on biodegradable magnesium alloy for biomedical applications. Vacuum, 2016, 131, 106-110.	1.6	69
20	Deposition of duplex MAO layer/nanostructured titanium dioxide composite coatings on Mg–1%Ca alloy using a combined technique ofÂair plasma spraying and micro arc oxidation. Journal of Alloys and Compounds, 2015, 649, 591-605.	2.8	65
21	Preparation and characterization of NiCrAlY/nano-YSZ/PCL composite coatings obtained by combination of atmospheric plasma spraying and dip coating on Mg–Ca alloy. Journal of Alloys and Compounds, 2016, 658, 440-452.	2.8	65
22	Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair. Tissue Engineering - Part A, 2021, 27, 679-702.	1.6	65
23	Fabrication and characterization of hydrophobic microarc oxidation/poly-lactic acid duplex coating on biodegradable Mg–Ca alloy for corrosion protection. Vacuum, 2016, 125, 185-188.	1.6	61
24	Influence of Silver nanoparticles addition on the phase transformation, mechanical properties and corrosion behaviour of Cu–Al–Ni shape memory alloys. Journal of Alloys and Compounds, 2014, 612, 471-478.	2.8	60
25	Magnesium-graphene nano-platelet composites: Corrosion behavior, mechanical and biological properties. Journal of Alloys and Compounds, 2020, 821, 153379.	2.8	60
26	Modification of surface hardness, wear resistance and corrosion resistance of cold spray Al coated AZ31B Mg alloy using cold spray double layered Ta/Ti coating in 3.5†wt % NaCl solution. Corrosion Science, 2020, 176, 109029.	3.0	60
27	Preparation and corrosion resistance of a nanocomposite plasma electrolytic oxidation coating on Mg-1%Ca alloy formed in aluminate electrolyte containing titania nano-additives. Journal of Alloys and Compounds, 2016, 688, 841-857.	2.8	59
28	Antibacterial activities and corrosion behavior of novel PEO/nanostructured ZrO2 coating on Mg alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 1571-1581.	1.7	58
29	Development of PMMA-Mon-CNT bone cement with superior mechanical properties and favorable biological properties for use in bone-defect treatment. Materials Letters, 2019, 240, 9-12.	1.3	56
30	Overview of magnesium-ceramic composites: mechanical, corrosion and biological properties. Journal of Materials Research and Technology, 2021, 15, 6034-6066.	2.6	56
31	Bi-layer nano-TiO2/FHA composite coatings on Mg–Zn–Ce alloy prepared by combined physical vapour deposition and electrochemical deposition methods. Vacuum, 2014, 110, 127-135.	1.6	52
32	Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. Materials, 2020, 13, 2663.	1.3	52
33	Polymethyl Methacrylate-Based Bone Cements Containing Carbon Nanotubes and Graphene Oxide: An Overview of Physical, Mechanical, and Biological Properties. Polymers, 2020, 12, 1469.	2.0	52
34	Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Materials Science and Engineering C, 2019, 102, 53-65.	3.8	51
35	Effect of fluoride treatment on corrosion behavior of Mg–Ca binary alloy for implant application. Transactions of Nonferrous Metals Society of China, 2013, 23, 699-710.	1.7	50
36	Recent Trends in Three-Dimensional Bioinks Based on Alginate for Biomedical Applications. Materials, 2020, 13, 3980.	1.3	49

#	Article	IF	CITATIONS
37	Fabrication and corrosion behavior of Si/HA nano-composite coatings on biodegradable Mg–Zn–Mn–Ca alloy. Surface and Coatings Technology, 2014, 258, 1090-1099.	2.2	48
38	Modelling corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa (x \hat{A} = \hat{A} 0, 0.5, 1.5, 3 and 6 \hat{A} wt%) alloys. Journal of Alloys and Compounds, 2016, 687, 630-642.	2.8	48
39	Drug delivery and cytocompatibility of ciprofloxacin loaded gelatin nanofibers-coated Mg alloy. Materials Letters, 2017, 207, 179-182.	1.3	48
40	3D printed microneedles for transdermal drug delivery: A brief review of two decades. International Journal of Pharmaceutics, 2021, 597, 120301.	2.6	48
41	Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering. Polymers, 2021, 13, 1744.	2.0	48
42	A Comprehensive Review on Surface Modifications of Biodegradable Magnesium-Based Implant Alloy: Polymer Coatings Opportunities and Challenges. Coatings, 2021, 11, 747.	1.2	48
43	Corrosion and bioactivity performance of graphene oxide coating on Ti Nb shape memory alloys in simulated body fluid. Materials Science and Engineering C, 2016, 68, 687-694.	3.8	47
44	The role of bismuth on the microstructure and corrosion behavior of ternary Mg–1.2Ca–xBi alloys for biomedical applications. Journal of Alloys and Compounds, 2015, 640, 335-346.	2.8	46
45	Synthesis of a novel nanostructured zinc oxide/baghdadite coating on Mg alloy for biomedical application: In-vitro degradation behavior and antibacterial activities. Ceramics International, 2017, 43, 14842-14850.	2.3	46
46	Novel nanostructured baghdadite-vancomycin scaffolds: In-vitro drug release, antibacterial activity and biocompatibility. Materials Letters, 2017, 209, 369-372.	1.3	44
47	Antibacterial activity and in vivo wound healing evaluation of polycaprolactone-gelatin methacryloyl-cephalexin electrospun nanofibrous. Materials Letters, 2019, 256, 126618.	1.3	44
48	Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X=Mn or Ti). Transactions of Nonferrous Metals Society of China, 2015, 25, 1158-1170.	1.7	43
49	Novel bi-layered nanostructured SiO2/Ag-FHAp coating on biodegradable magnesium alloy for biomedical applications. Ceramics International, 2016, 42, 11941-11950.	2.3	42
50	Improved antibacterial properties of an Mgâ€Znâ€Ca alloy coated with chitosan nanofibers incorporating silver sulfadiazine multiwall carbon nanotubes for bone implants. Polymers for Advanced Technologies, 2019, 30, 1333-1339.	1.6	42
51	A new multifunctional monticellite-ciprofloxacin scaffold: Preparation, bioactivity, biocompatibility, and antibacterial properties. Materials Chemistry and Physics, 2019, 222, 118-131.	2.0	42
52	Microstructure, mechanical properties, and in-vitro biocompatibility of nano- NiTi reinforced Mg–3Zn-0.5Ag alloy: Prepared by mechanical alloying for implant applications. Composites Part B: Engineering, 2020, 190, 107947.	5.9	41
53	Effect of mechanical alloying on the phase evolution, microstructure and bio-corrosion properties of a Mg/HA/TiO2/MgO nanocomposite. Ceramics International, 2014, 40, 16743-16759.	2.3	40
54	Drug release, cytocompatibility, bioactivity, and antibacterial activity of doxycycline loaded Mg-Ca-TiO2 composite scaffold. Materials and Design, 2018, 139, 212-221.	3.3	40

#	Article	IF	Citations
55	Microstructural characterization and corrosion resistance evaluation of nanostructured Al and Al/AlCr coated Mg–Zn–Ce–La alloy. Journal of Alloys and Compounds, 2014, 615, 657-671.	2.8	39
56	In-vitro degradation behavior of Mg alloy coated by fluorine doped hydroxyapatite and calcium deficient hydroxyapatite. Transactions of Nonferrous Metals Society of China, 2014, 24, 2516-2528.	1.7	39
57	Thermal Characteristics, Mechanical Properties, In Vitro Degradation and Cytotoxicity of Novel Biodegradable Zn–Al–Mg and Zn–Al–Mg–xBi Alloys. Acta Metallurgica Sinica (English Letters), 2017, 30, 201-211.	1.5	39
58	Graphene Family Nanomaterial Reinforced Magnesium-Based Matrix Composites for Biomedical Application: A Comprehensive Review. Metals, 2020, 10, 1002.	1.0	39
59	Synthesis and in-vitro performance of nanostructured monticellite coating on magnesium alloy for biomedical applications. Journal of Alloys and Compounds, 2019, 773, 180-193.	2.8	38
60	Zinc-doped hydroxyapatiteâ€"zeolite/polycaprolactone composites coating on magnesium substrate for enhancing in-vitro corrosion and antibacterial performance. Transactions of Nonferrous Metals Society of China, 2020, 30, 123-133.	1.7	36
61	Poly(methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 2021, 70, 1182-1201.	1.6	36
62	Corrosion resistance investigation of nanostructured Si- and Si/TiO2-coated Mg alloy in 3.5% NaCl solution. Vacuum, 2014, 108, 61-65.	1.6	35
63	Fabrication and properties of triplex NiCrAlY/nano Al2O3·13%TiO2/nano TiO2 coatings on a magnesium alloy by atmospheric plasma spraying method. Journal of Alloys and Compounds, 2015, 645, 450-466.	2.8	35
64	Corrosion and mechanical performance of double-layered nano-Al/PCL coating on Mg–Ca–Bi alloy. Vacuum, 2015, 119, 95-98.	1.6	33
65	Improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as third layer. Transactions of Nonferrous Metals Society of China, 2013, 23, 1322-1333.	1.7	32
66	Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. Journal of Rare Earths, 2014, 32, 989-1002.	2.5	32
67	Synthesis and biodegradation evaluation of nano-Si and nano-Si/TiO2 coatings on biodegradable Mg–Ca alloy in simulated body fluid. Ceramics International, 2014, 40, 14009-14018.	2.3	32
68	Microstructure, mechanical properties and corrosion behavior of Alâ€"Siâ€"Cuâ€"Znâ€"X (X=Bi, Sb, Sr) die cast alloy. Transactions of Nonferrous Metals Society of China, 2016, 26, 28-38.	1.7	32
69	Enhanced corrosion resistance and surface bioactivity of AZ31B Mg alloy by high pressure cold sprayed monolayer Ti and bilayer Ta/Ti coatings in simulated body fluid. Materials Chemistry and Physics, 2020, 256, 123627.	2.0	32
70	Synthesis and corrosion behavior of a hybrid bioceramic-biopolymer coating on biodegradable Mg alloy for orthopaedic implants. Journal of Alloys and Compounds, 2015, 648, 1067-1071.	2.8	31
71	Microstructural characterisation of air plasma sprayed nanostructure ceramic coatings on Mg–1%Ca alloys (bonded by NiCoCrAlYTa alloy). Ceramics International, 2016, 42, 357-371.	2.3	31
72	Antimicrobial Synthetic and Natural Polymeric Nanofibers as Wound Dressing: A Review. Advanced Engineering Materials, 2022, 24, .	1.6	30

#	Article	IF	Citations
73	Nano-hydroxyapatite reinforced zeolite ZSM composites: A comprehensive study on the structural and in vitro biological properties. Ceramics International, 2016, 42, 7175-7182.	2.3	29
74	In Vitro Degradation, Antibacterial Activity and Cytotoxicity of Mg-3Zn-xAg Nanocomposites Synthesized by Mechanical Alloying for Implant Applications. Journal of Materials Engineering and Performance, 2019, 28, 1441-1455.	1,2	29
75	Effect of Multi-Step Tempering on Retained Austenite and Mechanical Properties of Low Alloy Steel. Journal of Iron and Steel Research International, 2011, 18, 49-56.	1.4	28
76	Microstructure, In Vitro Corrosion Behavior and Cytotoxicity of Biodegradable Mg-Ca-Zn and Mg-Ca-Zn-Bi Alloys. Journal of Materials Engineering and Performance, 2017, 26, 653-666.	1.2	28
77	Fabrication and characterisation of novel ZnO/MWCNT duplex coating deposited on Mg alloy by PVD coupled with dip-coating techniques. Journal of Alloys and Compounds, 2017, 728, 159-168.	2.8	27
78	Synthesis and in-vitro characterization of biodegradable porous magnesium-based scaffolds containing silver for bone tissue engineering. Transactions of Nonferrous Metals Society of China, 2019, 29, 984-996.	1.7	27
79	Enhancement of corrosion resistance and mechanical properties of Mg–1.2Ca–2Bi via a hybrid silicon-biopolymer coating system. Surface and Coatings Technology, 2016, 301, 133-139.	2.2	25
80	In vitro corrosion behavior, bioactivity, and antibacterial performance of the silver-doped zinc oxide coating on magnesium alloy. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 1228-1236.	0.8	25
81	Apatiteâ€forming ability, cytocompatibility, and mechanical properties enhancement of poly methyl methacrylateâ€based bone cements by incorporating of baghdadite nanoparticles. International Journal of Applied Ceramic Technology, 2019, 16, 2006-2019.	1.1	25
82	CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104320.	1.5	25
83	3â€Dimensional Printing of Hydrogelâ€Based Nanocomposites: A Comprehensive Review on the Technology Description, Properties, and Applications. Advanced Engineering Materials, 2021, 23, 2100477.	1.6	25
84	Microstructural, mechanical properties and corrosion behavior of plasma sprayed NiCrAlY/nano-YSZ duplex coating on Mg–1.2Ca–3Zn alloy. Ceramics International, 2015, 41, 15272-15277.	2.3	24
85	Bioactivity, in-vitro corrosion behavior, and antibacterial activity of silver–zeolites doped hydroxyapatite coating on magnesium alloy. Transactions of Nonferrous Metals Society of China, 2018, 28, 1553-1562.	1.7	24
86	Friction Stir Welding/Processing of Mg-Based Alloys: A Critical Review on Advancements and Challenges. Materials, 2021, 14, 6726.	1.3	24
87	A Review on Antibacterial Biomaterials in Biomedical Applications: From Materials Perspective to Bioinks Design. Polymers, 2022, 14, 2238.	2.0	24
88	Effect of Y2O3 stabilized ZrO2 coating with tri-model structure on bi-layered thermally grown oxide evolution in nano thermal barrier coating systems at elevated temperatures. Journal of Rare Earths, 2014, 32, 57-77.	2.5	23
89	Microstructural Characteristics and Strengthening Mechanisms of Ferritic–Martensitic Dual-Phase Steels: A Review. Metals, 2022, 12, 101.	1.0	23
90	Synthesis and kinetic study of (Mo,W)Si2–WSi2 nanocomposite by mechanical alloying. Journal of Alloys and Compounds, 2012, 540, 248-259.	2.8	22

#	Article	IF	Citations
91	In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications. Polymer Testing, 2020, 91, 106698.	2.3	22
92	Recent advances on akermanite calciumâ€silicate ceramic for biomedical applications. International Journal of Applied Ceramic Technology, 2021, 18, 1901-1920.	1.1	22
93	A study on the corrosion behavior and biological properties of polycaprolactone/ bredigite composite coating on biodegradable Mg-Zn-Ca-GNP nanocomposite. Progress in Organic Coatings, 2020, 147, 105822.	1.9	21
94	Effect of zeolite on the corrosion behavior, biocompatibility and antibacterial activity of porous magnesium/zeolite composite scaffolds. Materials Technology, 2019, 34, 258-269.	1.5	19
95	A Brief Review on Additive Manufacturing of Polymeric Composites and Nanocomposites. Micromachines, 2021, 12, 704.	1.4	19
96	Synthesis and characterization of MoSi2-Mo5Si3 nanocomposite by mechanical alloying and heat treatment. International Journal of Refractory Metals and Hard Materials, 2012, 31, 236-241.	1.7	18
97	Investigation of Corrosion Protection Performance of Multiphase PEO (Mg2SiO4, MgO, MgAl2O4) Coatings on Mg Alloy Formed in Aluminate-Silicate- based Mixture Electrolyte. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 425-441.	0.3	18
98	Thermal characteristics and corrosion behaviour of Mg–xZn alloys for biomedical applications. Bulletin of Materials Science, 2013, 36, 1103-1113.	0.8	17
99	Effect of Electrodeposition Parameters on the Microstructure and Corrosion Behavior of â∈Ž <scp>DCPD</scp> Coatings on Biodegradable <scp>M</scp> g– <scp>C</scp> a– <scp>Z</scp> n Alloy. International Journal of Applied Ceramic Technology, 2015, 12, 1054-1064.	1.1	17
100	Microstructure development, phase reaction characteristics and properties of quaternary Zn-0.5Al-0.5Mg-xBi hot dipped coating alloy under slow and fast cooling rates. Surface and Coatings Technology, 2017, 315, 112-122.	2.2	17
101	Mechanical properties, corrosion behavior and biocompatibility of orthopedic pure titaniumâ°magnesium alloy screw prepared by friction welding. Transactions of Nonferrous Metals Society of China, 2020, 30, 2952-2966.	1.7	17
102	Fabrication, degradation behavior and cytotoxicity of nanostructured hardystonite and titania/hardystonite coatings on Mg alloys. Vacuum, 2016, 129, 9-12.	1.6	15
103	Characterization and biological properties of nanostructured clinoenstatite scaffolds for bone tissue engineering applications. Materials Chemistry and Physics, 2021, 259, 123969.	2.0	15
104	Reduced graphene oxide (RGO) reinforced Mg biocomposites for use as orthopedic applications: Mechanical properties, cytocompatibility and antibacterial activity. Journal of Magnesium and Alloys, 2022, 10, 3612-3627.	5.5	15
105	Antibacterial activities of zeolite/silver-graphene oxide nanocomposite in bone implants. Materials Technology, 2020, , 1-10.	1.5	14
106	Electrophoretic deposition of bioglass/graphene oxide composite on Ti-alloy implants for improved antibacterial and cytocompatible properties. Materials Technology, 2020, 35, 69-74.	1.5	13
107	Effect of Substrate's Heat Treatment on Microstructure and Mechanical Properties TLP Bonding of Dissimilar X-45/FSX-414 Cobalt Based Superalloys. Metals and Materials International, 2020, , 1.	1.8	13
108	Comprehensive microstructural investigation during dissimilar transient liquid phase bonding cobalt-based superalloys by BNi-9 amorphous interlayer foil. Journal of Materials Research and Technology, 2021, 13, 2144-2160.	2.6	13

#	Article	IF	CITATIONS
109	Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings. Journal of Materials Engineering and Performance, 2015, 24, 2614-2627.	1.2	12
110	Clinoenstatite/Tantalum Coating for Enhancement of Biocompatibility and Corrosion Protection of Mg Alloy. Journal of Functional Biomaterials, 2020, 11, 26.	1.8	12
111	Improved Bacteriostatic and Anticorrosion Effects of Polycaprolactone/Chitosan Coated Magnesium via Incorporation of Zinc Oxide. Materials, 2021, 14, 1930.	1.3	12
112	Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications. Biomedical Physics and Engineering Express, 2020, 6, 035011.	0.6	12
113	The Effect of Co-Encapsulated GO-Cu Nanofillers on Mechanical Properties, Cell Response, and Antibacterial Activities of Mg-Zn Composite. Metals, 2022, 12, 207.	1.0	12
114	Effect of graphene oxide on the corrosion, mechanical and biological properties of Mg-based nanocomposite. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 305-319.	2.4	11
115	MgO-incorporated carbon nanotubes-reinforced Mg-based composites to improve mechanical, corrosion, and biological properties targeting biomedical applications. Journal of Materials Research and Technology, 2022, 20, 976-990.	2.6	11
116	Novel synthesis of nickel ferrite magnetic nanoparticles by an inâ€liquid plasma. Journal of Materials Science: Materials in Electronics, 2021, 32, 10424-10442.	1.1	10
117	In vitro bioactivity and corrosion of PLGA/hardystonite composite-coated magnesium-based nanocomposite for implant applications. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 168-178.	2.4	9
118	Synthesis and Electrochemical Properties of TiNb2O7 and Ti2Nb10O29 Anodes under Various Annealing Atmospheres. Metals, 2021, 11, 983.	1.0	9
119	In Vitro Corrosion Behavior and Cytotoxicity of Polycaprolactone–Akermanite-Coated Friction-Welded Commercially Pure Ti/AZ31 for Orthopedic Applications. Journal of Materials Engineering and Performance, 2020, 29, 6053-6065.	1.2	8
120	Phase Formation during Heating of Amorphous Nickel-Based BNi-3 for Joining of Dissimilar Cobalt-Based Superalloys. Materials, 2021, 14, 4600.	1.3	8
121	Effect of Heat Treatment on Microstructure and Creep Behavior of Fe-40Ni-24Cr Alloy. Applied Sciences (Switzerland), 2021, 11, 7951.	1.3	7
122	Dual Synergistic Effects of MgO-GO Fillers on Degradation Behavior, Biocompatibility and Antibacterial Activities of Chitosan Coated Mg Alloy. Coatings, 2022, 12, 63.	1.2	7
123	Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers, 2022, 14, 1709.	2.0	7
124	In-vitro assessment of \hat{l}^2 -tricalcium phosphate/bredigite-ciprofloxacin (CPFX) scaffolds for bone treatment applications. Biomedical Materials (Bristol), 2021, 16, 045038.	1.7	6
125	Characterization and Corrosion Behavior Evaluation of Nanostructured TiO2 and Al2O3-13Âwt.%TiO2 Coatings on Aluminum Alloy Prepared via High-Velocity Oxy-Fuel Spray. Journal of Materials Engineering and Performance, 2021, 30, 1356-1370.	1.2	6
126	Fabrication and Corrosion Resistance Evaluation of Novel Epoxy/Oxide Layer (MgO) Coating on Mg Alloy. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 1039-1050.	0.3	6

#	Article	IF	Citations
127	Graphene oxide encapsulated forsterite scaffolds to improve mechanical properties and antibacterial behavior. Biomedical Materials (Bristol), 2022, 17, 035011.	1.7	6
128	Titania-carbon nanotubes nanocomposite coating on Mg alloy: Microstructural characterisation and mechanical properties. Materials Science and Technology, 2018, 34, 378-387.	0.8	5
129	Preparation of poly(εâ€caprolactone)â€hydroxyapatite composite coating for improvement of corrosion performance of biodegradable magnesium. Material Design and Processing Communications, 2020, 2, e170.	0.5	5
130	Mechanical property, antibacterial activity and cytocompatibility of a PMMA-based bone cement loaded with clindamycin for orthopaedic surgeries. Materials Technology, 2021, 36, 564-573.	1.5	5
131	Antibacterial Activity and Cell Responses of Vancomycin-Loaded Alginate Coating on ZSM-5 Scaffold for Bone Tissue Engineering Applications. Materials, 2022, 15, 4786.	1.3	5
132	Additive Manufacturing of Polymer Matrix Composites. , 2021, , 1013-1028.		4
133	Friction welding of pure titanium-AZ31 magnesium alloy: Characterization and simulation. Engineering Failure Analysis, 2022, 131, 105799.	1.8	4
134	Effect of Vanadium and Rare Earth on the Structure, Phase Transformation Kinetics and Mechanical Properties of Carbide-Free Bainitic Steel Containing Silicon. Applied Sciences (Switzerland), 2022, 12, 1668.	1.3	4
135	Effect of Cooling Rate on the Corrosion Behaviour of Zn-Al and Zn-Al-Mg Alloy. Materials Science Forum, 0, 819, 71-75.	0.3	3
136	Study of Corrosion Behavior and In Vitro Bioactivity of Single NbSi2 and Duplex NbSi2/Nb5Si3 Coatings on Nb Substrates for Biomedical Applications. Protection of Metals and Physical Chemistry of Surfaces, 2020, 56, 628-637.	0.3	3
137	Relationship between the microstructure and the heat treatment and creep behavior of Fe–33Ni–19Cr alloy. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1719-1738.	1.7	3
138	Corrosion Inhibitive Property of Self-Assembled Films Formed by Schiff base Molecules on Carbon Steel Surface. Protection of Metals and Physical Chemistry of Surfaces, 2021, 57, 849-857.	0.3	3
139	Effect of Secondary Phase on the Corrosion Behavior of Mg–Ca and Mg–Zn Binary Alloys. Advanced Science Letters, 2013, 19, 2553-2557.	0.2	3
140	Microstructural and Corrosion Behavior of Biodegradable Magnesium Alloys for Biomedical Implant. Materials Science Forum, 2015, 819, 331-336.	0.3	1
141	Nanoscale Tribological Properties of Nanostructure Fe3Al and (Fe,Ti)3Al Compounds Fabricated by Spark Plasma Sintering Method. Metals, 2022, 12, 1077.	1.0	1
142	Phase Evaluation of Pure Mg, Mg-1Ca and Mg-1Ca-3Zn ‎Alloys by Thermal Analysis Used in ‎Medical Applications. Applied Mechanics and Materials, 0, 606, 93-97.	0.2	0
143	Poly(methyl methacrylate)-Based Composite Bone Cements With Different Types of Reinforcement Agents., 2021,, 867-886.		0
144	Effect of Mechanical Alloying Time and Ball-Powder Weight Ratio on Synthesis of MoSi ₂ –Mo ₅ Si ₃ Nanocomposite. Advanced Science Letters, 2012, 13, 616-619.	0.2	0

#	Article	IF	CITATIONS
145	Effects of Zn and Ca Additions on the Solidification Behavior and Microstructure Analysis of Mg and Mg–6Zn Alloys. Advanced Science Letters, 2013, 19, 3508-3511.	0.2	o
146	Effects of nanomaterials on biodegradation of biomaterials. , 2022, , 105-135.		0