
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2739365/publications.pdf Version: 2024-02-01

ΙΠΗΥΖΗ ΠΚΥΖΙ

#	Article	IF	CITATIONS
1	Signal transduction via the stem cell factor receptor/c-Kit. Cellular and Molecular Life Sciences, 2004, 61, 2535-2548.	2.4	377
2	Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases EMBO Journal, 1993, 12, 2257-2264.	3.5	315
3	Phosphorylation of Shc by Src family kinases is necessary for stem cell factor receptor/c-kit mediated activation of the Ras/MAP kinase pathway and c-fos induction. Oncogene, 1999, 18, 5546-5553.	2.6	184
4	T cell receptor (TCR) signaling in health and disease. Signal Transduction and Targeted Therapy, 2021, 6, 412.	7.1	127
5	SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia. Cancer Cell, 2014, 25, 226-242.	7.7	126
6	Phosphatidylinositol 3 kinase contributes to the transformation of hematopoietic cells by the D816V c-Kit mutant. Blood, 2001, 98, 1365-1373.	0.6	123
7	Identification of two juxtamembrane autophosphorylation sites in the PDGF beta-receptor; involvement in the interaction with Src family tyrosine kinases. EMBO Journal, 1993, 12, 2257-64.	3.5	111
8	FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiological Reviews, 2019, 99, 1433-1466.	13.1	109
9	Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis EMBO Journal, 1996, 15, 5299-5313.	3.5	104
10	Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C EMBO Journal, 1993, 12, 4199-4209.	3.5	98
11	Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, 2016, 35, 5119-5131.	2.6	96
12	Identification of the Major Phosphorylation Sites for Protein Kinase C in Kit/Stem Cell Factor Receptor in Vitro and in Intact Cells. Journal of Biological Chemistry, 1995, 270, 14192-14200.	1.6	83
13	SOCS proteins in regulation of receptor tyrosine kinase signaling. Cellular and Molecular Life Sciences, 2014, 71, 3297-3310.	2.4	81
14	SHP-2 binds to Tyr763 and Tyr1009 in the PDGF Î ² -receptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis. Oncogene, 1999, 18, 3696-3702.	2.6	66
15	Suppressor of Cytokine Signaling 6 (SOCS6) Negatively Regulates Flt3 Signal Transduction through Direct Binding to Phosphorylated Tyrosines 591 and 919 of Flt3. Journal of Biological Chemistry, 2012, 287, 36509-36517.	1.6	62
16	Machine learning in the prediction of cancer therapy. Computational and Structural Biotechnology Journal, 2021, 19, 4003-4017.	1.9	58
17	Suppressor of cytokine signaling 2 (SOCS2) associates with FLT3 and negatively regulates downstream signaling. Molecular Oncology, 2013, 7, 693-703.	2.1	52
18	Mutation of a Src phosphorylation site in the PDGF beta-receptor leads to increased PDGF-stimulated chemotaxis but decreased mitogenesis. EMBO Journal, 1996, 15, 5299-313.	3.5	46

#	Article	IF	CITATIONS
19	FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Molecular Oncology, 2013, 7, 402-418.	2.1	45
20	Involvement of Phosphatidylinositol 3'-Kinase in Stem-Cell-Factor-Induced Phospholipase D Activation and Arachidonic Acid Release. FEBS Journal, 1997, 248, 149-155.	0.2	40
21	Src-Like Adaptor Protein (SLAP) Binds to the Receptor Tyrosine Kinase Flt3 and Modulates Receptor Stability and Downstream Signaling. PLoS ONE, 2012, 7, e53509.	1.1	40
22	The dual specificity PI3K/mTOR inhibitor PKI-587 displays efficacy against T-cell acute lymphoblastic leukemia (T-ALL). Cancer Letters, 2017, 392, 9-16.	3.2	39
23	Adaptor protein Lnk binds to and inhibits normal and leukemic FLT3. Blood, 2012, 120, 3310-3317.	0.6	38
24	De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nature Communications, 2018, 9, 1770.	5.8	38
25	Celecoxib-induced growth inhibition in SW480 colon cancer cells is associated with activation of protein kinase G. Molecular Carcinogenesis, 2008, 47, 519-525.	1.3	37
26	Keratin 19 expression correlates with poor prognosis in breast cancer. Molecular Biology Reports, 2014, 41, 7729-7735.	1.0	35
27	Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis. Cell and Bioscience, 2016, 6, 55.	2.1	35
28	Identification of Tyr-703 and Tyr-936 as the primary association sites for Grb2 and Grb7 in the c-Kit/stem cell factor receptor. Biochemical Journal, 1999, 341 (Pt 1), 211-6.	1.7	35
29	The role of HOXB2 and HOXB3 in acute myeloid leukemia. Biochemical and Biophysical Research Communications, 2015, 467, 742-747.	1.0	33
30	Increased Kit/SCF receptor induced mitogenicity but abolished cell motility after inhibition of protein kinase C. EMBO Journal, 1993, 12, 4199-209.	3.5	32
31	FYN expression potentiates FLT3-ITD induced STAT5 signaling in acute myeloid leukemia. Oncotarget, 2016, 7, 9964-9974.	0.8	31
32	Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. Journal of Cell Science, 2014, 127, 653-62.	1.2	30
33	The tyrosine kinase CSK associates with FLT3 and c-Kit receptors and regulates downstream signaling. Cellular Signalling, 2013, 25, 1852-1860.	1.7	30
34	SOCS6 is a selective suppressor of receptor tyrosine kinase signaling. Tumor Biology, 2014, 35, 10581-10589.	0.8	30
35	Brain-Expressed X-linked (BEX) proteins in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 226-233.	3.3	30
36	Protein kinase C (PKC) as a drug target in chronic lymphocytic leukemia. Medical Oncology, 2013, 30, 757.	1.2	29

#	Article	IF	CITATIONS
37	Phosphorylation of the Activation Loop Tyrosine 823 in c-Kit Is Crucial for Cell Survival and Proliferation. Journal of Biological Chemistry, 2013, 288, 22460-22468.	1.6	29
38	Grb10 is a dual regulator of receptor tyrosine kinase signaling. Molecular Biology Reports, 2014, 41, 1985-1992.	1.0	29
39	The c-Kit/D816V mutation eliminates the differences in signal transduction and biological responses between two isoforms of c-Kit. Cellular Signalling, 2009, 21, 413-418.	1.7	28
40	Efficacy of the CDK inhibitor dinaciclib inÂvitro and inÂvivo in T-cell acute lymphoblastic leukemia. Cancer Letters, 2017, 405, 73-78.	3.2	27
41	Isoform-specific translocation of PKC isoforms in NIH3T3 cells by TPA. Biochemical and Biophysical Research Communications, 2007, 364, 231-237.	1.0	25
42	BEX1 acts as a tumor suppressor in acute myeloid leukemia. Oncotarget, 2015, 6, 21395-21405.	0.8	25
43	Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Frontiers in Oncology, 2022, 12, 858782.	1.3	24
44	PDGF-Induced Phosphorylation of Tyr28 in the N-Terminus of Fyn Affects Fyn Activation. Biochemical and Biophysical Research Communications, 1997, 241, 355-362.	1.0	23
45	Deregulation of protein phosphatase expression in acute myeloid leukemia. Medical Oncology, 2013, 30, 517.	1.2	23
46	Acute leukemia cells resistant to PI3K/mTOR inhibition display upregulation of P2RY14 expression. Clinical Epigenetics, 2018, 10, 83.	1.8	23
47	Role of SRC-like adaptor protein (SLAP) in immune and malignant cell signaling. Cellular and Molecular Life Sciences, 2015, 72, 2535-2544.	2.4	22
48	FLT3 mutations in patients with childhood acute lymphoblastic leukemia (ALL). Medical Oncology, 2013, 30, 462.	1.2	21
49	Bioinformatic prediction and analysis of eukaryotic protein kinases in the rat genome. Gene, 2008, 410, 147-153.	1.0	20
50	Comparative analysis of human and bovine protein kinases reveals unique relationship and functional diversity. Genetics and Molecular Biology, 2011, 34, 587-591.	0.6	20
51	The role of SRC family kinases in FLT3 signaling. International Journal of Biochemistry and Cell Biology, 2019, 107, 32-37.	1.2	20
52	The mechanism of protein kinase C regulation. Frontiers in Biology, 2011, 6, 328.	0.7	19
53	The Src family kinase LCK cooperates with oncogenic FLT3/ITD in cellular transformation. Scientific Reports, 2017, 7, 13734.	1.6	19
54	Glucocorticoid-resistant B cell acute lymphoblastic leukemia displays receptor tyrosine kinase activation. Npj Genomic Medicine, 2019, 4, 7.	1.7	18

#	Article	IF	CITATIONS
55	Src-like adaptor protein 2 (SLAP2) binds to and inhibits FLT3 signaling. Oncotarget, 2016, 7, 57770-57782.	0.8	18
56	Bruton's tyrosine kinase potentiates ALK signaling and serves as a potential therapeutic target of neuroblastoma. Oncogene, 2018, 37, 6180-6194.	2.6	17
57	The Aurora kinase/ \hat{l}^2 -catenin axis contributes to dexamethasone resistance in leukemia. Npj Precision Oncology, 2021, 5, 13.	2.3	16
58	ABL2 suppresses FLT3-ITD-induced cell proliferation through negative regulation of AKT signaling. Oncotarget, 2017, 8, 12194-12202.	0.8	16
59	HIF2α contributes to antiestrogen resistance via positive bilateral crosstalk with EGFR in breast cancer cells. Oncotarget, 2016, 7, 11238-11250.	0.8	16
60	The presence or absence of IL-3 during long-term culture of Flt3-ITD and c-Kit-D816V expressing Ba/F3 cells influences signaling outcome. Experimental Hematology, 2013, 41, 585-587.	0.2	15
61	The PI3-kinase isoform p110δ is essential for cell transformation induced by the D816V mutant of c-Kit in a lipid-kinase-independent manner. Oncogene, 2014, 33, 5360-5369.	2.6	15
62	The activation loop tyrosine 823 is essential for the transforming capacity of the c-Kit oncogenic mutant D816V. Oncogene, 2015, 34, 4581-4590.	2.6	15
63	KITD816V Induces SRC-Mediated Tyrosine Phosphorylation of MITF and Altered Transcription Program in Melanoma. Molecular Cancer Research, 2017, 15, 1265-1274.	1.5	15
64	Protein kinase C expression is deregulated in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 2288-2290.	0.6	14
65	T-cell Acute Lymphoblastic Leukemia Cells Display Activation of Different Survival Pathways. Journal of Cancer, 2017, 8, 4124-4124.	1.2	13
66	Tyrosine 842 in the activation loop is required for full transformation by the oncogenic mutant FLT3-ITD. Cellular and Molecular Life Sciences, 2017, 74, 2679-2688.	2.4	12
67	The Phosphatases STS1 and STS2 Regulate Hematopoietic Stem and Progenitor Cell Fitness. Stem Cell Reports, 2015, 5, 633-646.	2.3	11
68	Expression of GADS enhances FLT3-induced mitogenic signaling. Oncotarget, 2016, 7, 14112-14124.	0.8	11
69	Maximum likelihood analysis of mammalian p53 indicates the presence of positively selected sites and higher tumorigenic mutations in purifying sites. Gene, 2011, 483, 29-35.	1.0	9
70	Induction of the nuclear proto-oncogene c-fos by the phorbol ester TPA and v-H-Ras. Molecules and Cells, 2008, 26, 462-7.	1.0	9
71	PI3 kinase is indispensable for oncogenic transformation by the V560D mutant of c-Kit in a kinase-independent manner. Cellular and Molecular Life Sciences, 2015, 72, 4399-4407.	2.4	7
72	Mechanisms of Anticancer Therapy Resistance: The Role of Cancer Stem Cells. International Journal of Molecular Sciences, 2020, 21, 9006.	1.8	6

#	Article	IF	CITATIONS
73	Role of Regulatory Domain Mutants of PKC Isoforms in c-fos Induction. Bulletin of the Korean Chemical Society, 2008, 29, 252-254.	1.0	6
74	The ALK inhibitor AZD3463 effectively inhibits growth of sorafenib-resistant acute myeloid leukemia. Blood Cancer Journal, 2019, 9, 5.	2.8	5
75	Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells. Bulletin of the Korean Chemical Society, 2009, 30, 1981-1984.	1.0	4
76	Selective mutation in ATP-binding site reduces affinity of drug to the kinase: a possible mechanism of chemo-resistance. Medical Oncology, 2013, 30, 448.	1.2	3
77	SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation. Scientific Reports, 2018, 8, 6405.	1.6	3
78	Visualization of the melanosome transfer-inhibition in a mouse epidermal cell co-culture model. International Journal of Molecular Medicine, 2010, 25, 249-53.	1.8	3
79	The basic helix-loop-helix (bHLH) proteins in breast cancer progression. Medical Oncology, 2013, 30, 666.	1.2	2
80	Comparative Studies on Human and Rat Basic Helix-loop-helix Proteins. Asian Journal of Biological Sciences, 2011, 4, 601-608.	0.2	2
81	Visualization of the melanosome transfer-inhibition in a mouse epidermal cell co-culture model. International Journal of Molecular Medicine, 2009, 25, .	1.8	1
82	Internal Tandem Duplication (ITD) in the Tyrosine Kinase Domain of FLT3 Displays Higher Oncogenic Potential in Acute Myeloid Leukemia. Blood, 2016, 128, 5118-5118.	0.6	1
83	SOCS6 (Suppressor Of Cytokine Signaling 6). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2014, , .	0.1	Ο
84	Aberrant Activation of the PI3K/mTOR Pathway Promotes Resistance to Sorafenib in AML. Blood, 2015, 126, 2472-2472.	0.6	0
85	FMS-Like Tyrosine Kinase-3. , 2016, , 1-4.		Ο
86	BEX3. , 2016, , 1-4.		0
87	GRB10. , 2016, , 1-4.		Ο
88	Src-Like Adapter Protein (SLAP). , 2016, , 1-4.		0
89	Src-Like Adapter Protein 2 (SLAP2). , 2016, , 1-4.		0
90	Tyrosine 842 Residue in the Activation Loop of FLT3-ITD Is Indespensible for Oncogenic Transformation. Blood, 2016, 128, 1561-1561.	0.6	0

#	Article	IF	CITATIONS
91	Activating Mutations Are Potent Pro-Leukemic Mediators in Murine MLL-MLLT3 Leukemia That Cause Distinct Transcriptional Profiles. Blood, 2016, 128, 3918-3918.	0.6	Ο
92	Loss of Src-like Adaptor Protein 2 Expression Increases the Transforming Potential of Oncogenic FLT3-ITD. Blood, 2016, 128, 5106-5106.	0.6	0
93	BEX3., 2018, , 549-552.		Ο
94	GRB10. , 2018, , 2250-2253.		0
95	FMS-Like Tyrosine Kinase-3. , 2018, , 1787-1790.		Ο
96	Src-Like Adapter Protein (SLAP). , 2018, , 5145-5149.		0
97	Kit. , 2018, , 2772-2776.		Ο
98	Src-Like Adapter Protein 2 (SLAP2). , 2018, , 5149-5152.		0