
Lark L Coffey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738850/publications.pdf Version: 2024-02-01

LADEL COFFEY

#	Article	IF	CITATIONS
1	Efficacy of an inactivated Zika vaccine against virus infection during pregnancy in mice and marmosets. Npj Vaccines, 2022, 7, 9.	6.0	13
2	Early post-infection treatment of SARS-CoV-2 infected macaques with human convalescent plasma with high neutralizing activity had no antiviral effects but moderately reduced lung inflammation. PLoS Pathogens, 2022, 18, e1009925.	4.7	8
3	Zika virus persistence in the male macaque reproductive tract. PLoS Neglected Tropical Diseases, 2022, 16, e0010566.	3.0	2
4	Respiratory Tract Explant Infection Dynamics of Influenza A Virus in California Sea Lions, Northern Elephant Seals, and Rhesus Macaques. Journal of Virology, 2021, 95, e0040321.	3.4	6
5	Monoclonal antibodies protect aged rhesus macaques from SARS-CoV-2-induced immune activation and neuroinflammation. Cell Reports, 2021, 37, 109942.	6.4	9
6	Microbial Composition in Larval Water Enhances Aedes aegypti Development but Reduces Transmissibility of Zika Virus. MSphere, 2021, 6, e0068721.	2.9	5
7	Patterns, Drivers, and Challenges of Vector-Borne Disease Emergence. Vector-Borne and Zoonotic Diseases, 2020, 20, 159-170.	1.5	74
8	Single Amino Acid Mutations Affect Zika Virus Replication In Vitro and Virulence In Vivo. Viruses, 2020, 12, 1295.	3.3	11
9	Movement of St. Louis encephalitis virus in the Western United States, 2014- 2018. PLoS Neglected Tropical Diseases, 2020, 14, e0008343.	3.0	9
10	Engineering a fidelity-variant live-attenuated vaccine for chikungunya virus. Npj Vaccines, 2020, 5, 97.	6.0	10
11	Identification of Mosquito Bloodmeals Collected in Diverse Habitats in Malaysian Borneo Using COI Barcoding. Tropical Medicine and Infectious Disease, 2020, 5, 51.	2.3	7
12	A combination of two human monoclonal antibodies limits fetal damage by Zika virus in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7981-7989.	7.1	24
13	Two Sides of a Coin: a Zika Virus Mutation Selected in Pregnant Rhesus Macaques Promotes Fetal Infection in Mice but at a Cost of Reduced Fitness in Nonpregnant Macaques and Diminished Transmissibility by Vectors. Journal of Virology, 2020, 94, .	3.4	10
14	Evolution of ocular defects in infant macaques following in utero Zika virus infection. JCI Insight, 2020, 5, .	5.0	10
15	Risk of Zika microcephaly correlates with features of maternal antibodies. Journal of Experimental Medicine, 2019, 216, 2302-2315.	8.5	41
16	Postnatal Zika virus infection of nonhuman primate infants born to mothers infected with homologous Brazilian Zika virus. Scientific Reports, 2019, 9, 12802.	3.3	14
17	DNA vaccination before conception protects Zika virus–exposed pregnant macaques against prolonged viremia and improves fetal outcomes. Science Translational Medicine, 2019, 11, .	12.4	31
18	Chikungunya virus populations experience diversity- dependent attenuation and purifying intra-vector selection in Californian Aedes aegypti mosquitoes. PLoS Neglected Tropical Diseases, 2019, 13, e0007853.	3.0	7

LARK L COFFEY

#	Article	IF	CITATIONS
19	Multiscale analysis for patterns of Zika virus genotype emergence, spread, and consequence. PLoS ONE, 2019, 14, e0225699.	2.5	12
20	Chikungunya Virus Fidelity Variants Exhibit Differential Attenuation and Population Diversity in Cell Culture and Adult Mice. Journal of Virology, 2019, 93, .	3.4	22
21	An amplicon-based sequencing framework for accurately measuring intrahost virus diversity using PrimalSeq and iVar. Genome Biology, 2019, 20, 8.	8.8	712
22	A Combination of Two Human Monoclonal Antibodies Prevents Zika Virus Escape Mutations in Non-human Primates. Cell Reports, 2018, 25, 1385-1394.e7.	6.4	61
23	Scented Sugar Baits Enhance Detection of St. Louis Encephalitis and West Nile Viruses in Mosquitoes in Suburban California. Journal of Medical Entomology, 2018, 55, 1307-1318.	1.8	6
24	Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates. Nature Medicine, 2018, 24, 1104-1107.	30.7	85
25	Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nature Communications, 2018, 9, 2414.	12.8	66
26	Vector competence of Aedes aegypti, Culex tarsalis, and Culex quinquefasciatus from California for Zika virus. PLoS Neglected Tropical Diseases, 2018, 12, e0006524.	3.0	45
27	Virome of >†12 thousand Culex mosquitoes from throughout California. Virology, 2018, 523, 74-88.	2.4	88
28	New genotypes of Liao ning virus (LNV) in Australia exhibit an insect-specific phenotype. Journal of General Virology, 2018, 99, 596-609.	2.9	14
29	ICTV Virus Taxonomy Profile: Togaviridae. Journal of General Virology, 2018, 99, 761-762.	2.9	122
30	Relative analytical sensitivity of donor nucleic acid amplification technology screening and diagnostic realâ€ŧime polymerase chain reaction assays for detection of Zika virus RNA. Transfusion, 2017, 57, 734-747.	1.6	34
31	Diagnosis of Fatal Human Case of St. Louis Encephalitis Virus Infection by Metagenomic Sequencing, California, 2016. Emerging Infectious Diseases, 2017, 23, 1964-1968.	4.3	76
32	Zika Virus Tissue and Blood Compartmentalization in Acute Infection of Rhesus Macaques. PLoS ONE, 2017, 12, e0171148.	2.5	102
33	Reemergence of St. Louis Encephalitis Virus, California, 2015. Emerging Infectious Diseases, 2016, 22, 2185-2188.	4.3	29
34	Interaction of Chikungunya Virus with the Mosquito Vector. , 2016, , 99-126.		0
35	West Nile Virus Fitness Costs in Different Mosquito Species. Trends in Microbiology, 2016, 24, 429-430.	7.7	2
36	Quenching of Unincorporated Amplification Signal Reporters in Reverse-Transcription Loop-Mediated Isothermal Amplification Enabling Bright, Single-Step, Closed-Tube, and Multiplexed Detection of RNA Viruses. Analytical Chemistry, 2016, 88, 3562-3568.	6.5	119

LARK L COFFEY

#	Article	IF	CITATIONS
37	Reorganization and expansion of the nidoviral family Arteriviridae. Archives of Virology, 2016, 161, 755-768.	2.1	254
38	Surveillance for Western Equine Encephalitis, St. Louis Encephalitis, and West Nile Viruses Using Reverse Transcription Loop-Mediated Isothermal Amplification. PLoS ONE, 2016, 11, e0147962.	2.5	22
39	Arboviral Bottlenecks and Challenges to Maintaining Diversity and Fitness during Mosquito Transmission. Viruses, 2014, 6, 3991-4004.	3.3	64
40	Chikungunya Virus–Vector Interactions. Viruses, 2014, 6, 4628-4663.	3.3	130
41	Emergence and Transmission of Arbovirus Evolutionary Intermediates with Epidemic Potential. Cell Host and Microbe, 2014, 15, 706-716.	11.0	107
42	Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiology, 2013, 8, 155-176.	2.0	124
43	The Perils of Pathogen Discovery: Origin of a Novel Parvovirus-Like Hybrid Genome Traced to Nucleic Acid Extraction Spin Columns. Journal of Virology, 2013, 87, 11966-11977.	3.4	216
44	Mechanism of Dengue Virus Broad Cross-Neutralization by a Monoclonal Antibody. Structure, 2012, 20, 303-314.	3.3	121
45	Host Alternation of Chikungunya Virus Increases Fitness while Restricting Population Diversity and Adaptability to Novel Selective Pressures. Journal of Virology, 2011, 85, 1025-1035.	3.4	152
46	Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16038-16043.	7.1	222
47	Aedes aegypti Saliva Alters Leukocyte Recruitment and Cytokine Signaling by Antigen-Presenting Cells during West Nile Virus Infection. PLoS ONE, 2010, 5, e11704.	2.5	86
48	Human genetic determinants of dengue virus susceptibility. Microbes and Infection, 2009, 11, 143-156.	1.9	110
49	Arbovirus evolution <i>in vivo</i> is constrained by host alternation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6970-6975.	7.1	182
50	Human Muscle Satellite Cells as Targets of Chikungunya Virus Infection. PLoS ONE, 2007, 2, e527.	2.5	245
51	Venezuelan Equine Encephalitis Virus Infection of Cotton Rats. Emerging Infectious Diseases, 2007, 13, 1158-1165.	4.3	34
52	Serologic Evidence of Widespread Everglades Virus Activity in Dogs, Florida. Emerging Infectious Diseases, 2006, 12, 1873-1879.	4.3	24
53	Venezuelan Equine Encephalitis Virus Transmission and Effect on Pathogenesis. Emerging Infectious Diseases, 2006, 12, 1190-1196.	4.3	43
54	Postepizootic Persistence of Venezuelan Equine Encephalitis Virus, Venezuela. Emerging Infectious Diseases, 2005, 11, 1907-1915.	4.3	26

LARK L COFFEY

#	Article	IF	CITATIONS
55	Susceptibility of Ochlerotatus taeniorhynchus and Culex nigripalpus for Eeverglades virus. American Journal of Tropical Medicine and Hygiene, 2005, 73, 11-6.	1.4	10
56	Potential role of sylvatic and domestic African mosquito species in dengue emergence. American Journal of Tropical Medicine and Hygiene, 2005, 73, 445-9.	1.4	54
57	Endemic Venezuelan Equine Encephalitis in Northern Peru. Emerging Infectious Diseases, 2004, 10, 880-888.	4.3	65
58	Experimental Everglades Virus Infection of Cotton Rats (Sigmodon hispidus). Emerging Infectious Diseases, 2004, 10, 2182-2188.	4.3	28
59	Dengue Emergence and Adaptation to Peridomestic Mosquitoes. Emerging Infectious Diseases, 2004, 10, 1790-1796.	4.3	93
60	Use of a Recombinant Envelope Protein Subunit Antigen for Specific Serological Diagnosis of West Nile Virus Infection. Journal of Clinical Microbiology, 2004, 42, 2759-2765.	3.9	59
61	West Nile Virus in Mexico: Evidence of Widespread Circulation since July 2002 Emerging Infectious Diseases, 2003, 9, 1604-1607.	4.3	142
62	Two New Rhabdoviruses (Rhabdoviridae) Isolated from Birds During Surveillance for Arboviral Encephalitis, Northeastern United States. Emerging Infectious Diseases, 2002, 8, 614-618.	4.3	16
63	Vector competence. , 2001, , 139-180.		3