Yayuan Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/2738832/yayuan-liu-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

104 19,475 101 59 h-index g-index citations papers 23,298 104 15.3 7.41 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
101	Reviving the lithium metal anode for high-energy batteries. <i>Nature Nanotechnology</i> , 2017 , 12, 194-206	28.7	3302
100	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. <i>Nature Nanotechnology</i> , 2016 , 11, 626-32	28.7	1261
99	Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. <i>Nature Communications</i> , 2015 , 6, 7261	17.4	855
98	Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 840-845	11.5	742
97	Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 2862-7	11.5	643
96	Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. <i>Nature Communications</i> , 2016 , 7, 10992	17.4	641
95	High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. <i>Nature Catalysis</i> , 2018 , 1, 156-162	36.5	632
94	An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. <i>Advanced Materials</i> , 2017 , 29, 1605531	24	581
93	Challenges and opportunities towards fast-charging battery materials. <i>Nature Energy</i> , 2019 , 4, 540-550	62.3	566
92	High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). <i>Nano Letters</i> , 2016 , 16, 459-65	11.5	535
91	Materials for lithium-ion battery safety. <i>Science Advances</i> , 2018 , 4, eaas9820	14.3	528
90	Rapid water disinfection using vertically aligned MoS nanofilms and visible light. <i>Nature Nanotechnology</i> , 2016 , 11, 1098-1104	28.7	514
89	Direct and continuous strain control of catalysts with tunable battery electrode materials. <i>Science</i> , 2016 , 354, 1031-1036	33.3	369
88	Lithium Metal Anodes with an Adaptive "Solid-Liquid" Interfacial Protective Layer. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4815-4820	16.4	352
87	A family of metal-organic frameworks exhibiting size-selective catalysis with encapsulated noble-metal nanoparticles. <i>Advanced Materials</i> , 2014 , 26, 4056-60	24	330
86	In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation. <i>ACS Central Science</i> , 2015 , 1, 244-51	16.8	314
85	Solid-State Lithium-Sulfur Batteries Operated at 37 LC with Composites of Nanostructured LiLaZrO/Carbon Foam and Polymer. <i>Nano Letters</i> , 2017 , 17, 2967-2972	11.5	297

(2019-2017)

84	Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon. <i>Nano Letters</i> , 2017 , 17, 3731-3737	11.5	270
83	Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2014 , 6, 12684-91	9.5	260
82	A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus. <i>Advanced Materials</i> , 2018 , 30, e1802661	24	242
81	Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 4613-4618	11.5	241
80	Roll-to-Roll Transfer of Electrospun Nanofiber Film for High-Efficiency Transparent Air Filter. <i>Nano Letters</i> , 2016 , 16, 1270-5	11.5	241
79	Solubility-mediated sustained release enabling nitrate additive in carbonate electrolytes for stable lithium metal anode. <i>Nature Communications</i> , 2018 , 9, 3656	17.4	234
78	Design of Complex Nanomaterials for Energy Storage: Past Success and Future Opportunity. <i>Accounts of Chemical Research</i> , 2017 , 50, 2895-2905	24.3	198
77	Designable YolkBhell [email[þrotected] Petalous Heterostructures. <i>Chemistry of Materials</i> , 2014 , 26, 1119-1125	9.6	185
76	Paclitaxel loaded liposomes decorated with a multifunctional tandem peptide for glioma targeting. <i>Biomaterials</i> , 2014 , 35, 4835-47	15.6	185
75	Mesoporous metal-organic frameworks with size-, shape-, and space-distribution-controlled pore structure. <i>Advanced Materials</i> , 2015 , 27, 2923-9	24	184
74	Spectrally Selective Nanocomposite Textile for Outdoor Personal Cooling. <i>Advanced Materials</i> , 2018 , 30, e1802152	24	181
73	Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. <i>Nano Letters</i> , 2018 , 18, 3829-3838	11.5	178
72	Warming up human body by nanoporous metallized polyethylene textile. <i>Nature Communications</i> , 2017 , 8, 496	17.4	162
71	Ultrahigh-current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF framework. <i>Science Advances</i> , 2017 , 3, e1701301	14.3	158
70	In Situ Electrochemically Derived Nanoporous Oxides from Transition Metal Dichalcogenides for Active Oxygen Evolution Catalysts. <i>Nano Letters</i> , 2016 , 16, 7588-7596	11.5	152
69	All-Integrated Bifunctional Separator for Li Dendrite Detection via Novel Solution Synthesis of a Thermostable Polyimide Separator. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11044-50	16.4	143
68	Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. <i>Energy and Environmental Science</i> , 2015 , 8, 1719-1724	35.4	142
67	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. <i>Nano Letters</i> , 2019 , 19, 1326-1335	11.5	136

66	A pH-responsive Helical cell penetrating peptide-mediated liposomal delivery system. <i>Biomaterials</i> , 2013 , 34, 7980-93	15.6	136
65	Sulfiphilic Nickel Phosphosulfide Enabled Li S Impregnation in 3D Graphene Cages for Li-S Batteries. <i>Advanced Materials</i> , 2017 , 29, 1603366	24	127
64	Fundamental study on the wetting property of liquid lithium. Energy Storage Materials, 2018, 14, 345-3	50 9.4	117
63	An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes. <i>Joule</i> , 2018 , 2, 1595-1609	27.8	116
62	Identifying the Active Surfaces of Electrochemically Tuned LiCoO for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2017 , 139, 6270-6276	16.4	115
61	An Autotransferable g-C N Li -Modulating Layer toward Stable Lithium Anodes. <i>Advanced Materials</i> , 2019 , 31, e1900342	24	111
60	An Aqueous Inorganic Polymer Binder for High Performance Lithium-Sulfur Batteries with Flame-Retardant Properties. <i>ACS Central Science</i> , 2018 , 4, 260-267	16.8	107
59	Metallurgically lithiated SiOx anode with high capacity and ambient air compatibility. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7408-13	11.5	103
58	Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. <i>Science Advances</i> , 2017 , 3, eaao0713	14.3	102
57	Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. <i>Nature Chemistry</i> , 2019 , 11, 382	-3 89 .6	100
56	Stretchable Lithium Metal Anode with Improved Mechanical and Electrochemical Cycling Stability. Joule, 2018 , 2, 1857-1865	27.8	99
55	Nanoscale perspective: Materials designs and understandings in lithium metal anodes. <i>Nano Research</i> , 2017 , 10, 4003-4026	10	98
54	Synthesis and self-assembly of monodispersed metal-organic framework microcrystals. <i>Chemistry - an Asian Journal</i> , 2013 , 8, 69-72	4.5	98
53	Quantitative investigation of polysulfide adsorption capability of candidate materials for Li-S batteries. <i>Energy Storage Materials</i> , 2018 , 13, 241-246	19.4	96
52	Lithium Metal Anode Materials Design: Interphase and Host. <i>Electrochemical Energy Reviews</i> , 2019 , 2, 509-517	29.3	94
51	Synergistic enhancement of electrocatalytic CO reduction to C oxygenates at nitrogen-doped nanodiamonds/Cu interface. <i>Nature Nanotechnology</i> , 2020 , 15, 131-137	28.7	92
50	Increased tumor targeted delivery using a multistage liposome system functionalized with RGD, TAT and cleavable PEG. <i>International Journal of Pharmaceutics</i> , 2014 , 468, 26-38	6.5	80
49	High Tumor Penetration of Paclitaxel Loaded pH Sensitive Cleavable Liposomes by Depletion of Tumor Collagen I in Breast Cancer. <i>ACS Applied Materials & Depletion of Mater</i>	9.5	78

48	A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin	11.7	78
47	Dual Receptor Recognizing Cell Penetrating Peptide for Selective Targeting, Efficient Intratumoral Diffusion and Synthesized Anti-Glioma Therapy. <i>Theranostics</i> , 2016 , 6, 177-91	12.1	70
46	An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes. <i>Advanced Energy Materials</i> , 2019 , 9, 1802720	21.8	70
45	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. <i>Nano Research</i> , 2017 , 10, 1213-1222	10	66
44	Self-assembled metal-organic frameworks crystals for chemical vapor sensing. <i>Small</i> , 2014 , 10, 3672-6	11	65
43	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. <i>Nature Energy</i> , 2020 , 5, 786-793	62.3	63
42	Well-Dispersed and Size-Controlled Supported Metal Oxide Nanoparticles Derived from MOF Composites and Further Application in Catalysis. <i>Small</i> , 2015 , 11, 3130-4	11	58
41	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. <i>Science Advances</i> , 2019 , 5, eaau5655	14.3	57
40	Simultaneous delivery of therapeutic antagomirs with paclitaxel for the management of metastatic tumors by a pH-responsive anti-microbial peptide-mediated liposomal delivery system. <i>Journal of Controlled Release</i> , 2015 , 197, 208-18	11.7	56
39	A general prelithiation approach for group IV elements and corresponding oxides. <i>Energy Storage Materials</i> , 2018 , 10, 275-281	19.4	56
38	Multifunctional Tandem Peptide Modified Paclitaxel-Loaded Liposomes for the Treatment of Vasculogenic Mimicry and Cancer Stem Cells in Malignant Glioma. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 16792-801	9.5	55
37	Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug. <i>ACS Applied Materials & Drug (Interfaces)</i> , 2016 , 8, 9577-89	9.5	55
36	Co-delivery of doxorubicin and P-gp inhibitor by a reduction-sensitive liposome to overcome multidrug resistance, enhance anti-tumor efficiency and reduce toxicity. <i>Drug Delivery</i> , 2016 , 23, 1130-4	.37	53
35	Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. <i>Nano Research</i> , 2017 , 10, 3754-3764	10	51
34	Nanoscale ion intermixing induced activation of Fe2O3/MnO2 composites for application in lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 8510-8518	13	47
33	Liposomes Combined an Integrin IB-Specific Vector with pH-Responsible Cell-Penetrating Property for Highly Effective Antiglioma Therapy through the Blood-Brain Barrier. <i>ACS Applied Materials & Description (Materials & De</i>	9.5	47
32	Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance. <i>International Journal of Pharmaceutics</i> , 2014 , 477, 590-600	6.5	47
31	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. <i>Nano Letters</i> , 2018 , 18, 1130-1138	11.5	41

30	Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide. <i>Scientific Reports</i> , 2016 , 6, 19800	4.9	39
29	Reactivation of dead sulfide species in lithium polysulfide flow battery for grid scale energy storage. <i>Nature Communications</i> , 2017 , 8, 462	17.4	38
28	Controlled incorporation of nanoparticles in metal-organic framework hybrid thin films. <i>Chemical Communications</i> , 2014 , 50, 4296-8	5.8	36
27	In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. <i>Nanoscale</i> , 2014 , 6, 749-52	7.7	36
26	Enhanced antitumor and anti-metastasis efficiency via combined treatment with CXCR4 antagonist and liposomal doxorubicin. <i>Journal of Controlled Release</i> , 2014 , 196, 324-31	11.7	36
25	Improving Lithium Metal Composite Anodes with Seeding and Pillaring Effects of Silicon Nanoparticles. <i>ACS Nano</i> , 2020 , 14, 4601-4608	16.7	34
24	Effective treatment of the primary tumor and lymph node metastasis by polymeric micelles with variable particle sizes. <i>Journal of Controlled Release</i> , 2018 , 292, 67-77	11.7	33
23	Targeting delivery and deep penetration using multistage nanoparticles for triple-negative breast cancer. <i>RSC Advances</i> , 2015 , 5, 64303-64317	3.7	31
22	Lithium Metal Anodes: A Recipe for Protection. <i>Joule</i> , 2017 , 1, 649-650	27.8	31
21	Underpotential lithium plating on graphite anodes caused by temperature heterogeneity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29453-2946	1 ^{11.5}	30
20	Polymer-Drug Nanoparticles Combine Doxorubicin Carrier and Heparin Bioactivity Functionalities for Primary and Metastatic Cancer Treatment. <i>Molecular Pharmaceutics</i> , 2017 , 14, 513-522	5.6	29
19	Enhanced Tumor Retention Effect by Click Chemistry for Improved Cancer Immunochemotherapy. <i>ACS Applied Materials & District Science</i> , 2018, 10, 17582-17593	9.5	28
18	Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. <i>Nature Communications</i> , 2020 , 11, 2278	17.4	24
17	A novel antitumour strategy using bidirectional autophagic vesicles accumulation via initiative induction and the terminal restraint of autophagic flux. <i>Journal of Controlled Release</i> , 2015 , 199, 17-28	11.7	21
16	Enhanced glioma therapy by synergistic inhibition of autophagy and tyrosine kinase activity. <i>International Journal of Pharmaceutics</i> , 2018 , 536, 1-10	6.5	20
15	Chemotherapy priming of the Pancreatic Tumor Microenvironment Promotes Delivery and Anti-Metastasis Efficacy of Intravenous Low-Molecular-Weight Heparin-Coated Lipid-siRNA Complex. <i>Theranostics</i> , 2019 , 9, 355-368	12.1	19
14	Parallel near-field photolithography with metal-coated elastomeric masks. <i>Langmuir</i> , 2015 , 31, 1210-7	4	17
13	Tandem Peptide Based on Structural Modification of Poly-Arginine for Enhancing Tumor Targeting Efficiency and Therapeutic Effect. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 2083-2092	9.5	16

LIST OF PUBLICATIONS

12	Dual Receptor Targeting Cell Penetrating Peptide Modified Liposome for Glioma and Breast Cancer Postoperative Recurrence Therapy. <i>Pharmaceutical Research</i> , 2018 , 35, 130	4.5	16	
11	Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides. <i>Drug Delivery</i> , 2016 , 23, 1163-70	7	16	
10	Efficient siRNA transfer to knockdown a placenta specific lncRNA using RGD-modified nano-liposome: A new preeclampsia-like mouse model. <i>International Journal of Pharmaceutics</i> , 2018 , 546, 115-124	6.5	16	
9	Microencapsulation of dye- and drug-loaded particles for imaging and controlled release of multiple drugs. <i>Advanced Healthcare Materials</i> , 2012 , 1, 159-63	10.1	12	
8	Integrin BB targeting activity study of different retro-inverso sequences of RGD and their potentiality in the designing of tumor targeting peptides. <i>Amino Acids</i> , 2015 , 47, 2533-9	3.5	11	
7	Centimeter-scale subwavelength photolithography using metal-coated elastomeric photomasks with modulated light intensity at the oblique sidewalls. <i>Langmuir</i> , 2015 , 31, 5005-13	4	8	
6	Cabazitaxel and indocyanine green co-delivery tumor-targeting nanoparticle for improved antitumor efficacy and minimized drug toxicity. <i>Journal of Drug Targeting</i> , 2017 , 25, 179-187	5.4	7	
5	Cell-penetrating peptides induce apoptosis and necrosis through specific mechanism and cause impairment of Na-K-ATPase and mitochondria. <i>Amino Acids</i> , 2017 , 49, 75-88	3.5	5	
4	Electrochemically mediated gating membrane with dynamically controllable gas transport. <i>Science Advances</i> , 2020 , 6,	14.3	4	
3	Toward solvent-free continuous-flow electrochemically mediated carbon capture with high-concentration liquid quinone chemistry. <i>Joule</i> , 2022 , 6, 221-239	27.8	2	
2	Electrochemical and Molecular Assessment of Quinones as CO2-Binding Redox Molecules for Carbon Capture. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 1389-1399	3.8	1	
1	Macrophage-mediated multi-mode drug release system for photothermal combined with anti-inflammatory therapy against postoperative recurrence of triple negative breast cancer. <i>International Journal of Pharmaceutics</i> , 2021 , 607, 120975	6.5	1	