
Eduardo Jesus Salustiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273879/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic Symbiosis and Immunomodulation: How Tumor Cell-Derived Lactate May Disturb Innate and Adaptive Immune Responses. Frontiers in Oncology, 2018, 8, 81.	2.8	86
2	Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1,4-naphthoquinones on human leukemic cells. Investigational New Drugs, 2010, 28, 139-144.	2.6	47
3	New pterocarpanquinones: Synthesis, antineoplasic activity on cultured human malignant cell lines and TNF-α modulation in human PBMC cells. Bioorganic and Medicinal Chemistry, 2010, 18, 1610-1616.	3.0	41
4	Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias. Journal of Biological Chemistry, 2020, 295, 6457-6471.	3.4	32
5	LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]: a novel class of agent with high apoptotic effect in chronic myeloid leukemia cells. Investigational New Drugs, 2011, 29, 1143-1155.	2.6	31
6	(±)-3,4-Dihydroxy-8,9-methylenedioxypterocarpan and derivatives: Cytotoxic effect on human leukemia cell lines. European Journal of Medicinal Chemistry, 2009, 44, 920-925.	5.5	29
7	Functional Characterization of ABCC Proteins from Trypanosoma cruzi and Their Involvement with Thiol Transport. Frontiers in Microbiology, 2018, 9, 205.	3.5	18
8	Enantioselective Synthesis, DFT Calculations, and Preliminary Antineoplastic Activity of Dibenzo 1-Azaspiro[4.5]decanes on Drug-Resistant Leukemias. Journal of Organic Chemistry, 2019, 84, 2219-2233.	3.2	17
9	11a-N-Tosyl-5-deoxi-pterocarpan (LQB-223), a promising prototype for targeting MDR leukemia cell lines. European Journal of Medicinal Chemistry, 2014, 78, 190-197.	5.5	11
10	The pterocarpanquinone LQB-118 induces apoptosis in acute myeloid leukemia cells of distinct molecular subtypes and targets FoxO3a and FoxM1 transcription factors. International Journal of Oncology, 2014, 45, 1949-1958.	3.3	11
11	11a-N-tosyl-5-carbapterocarpans: Synthesis, antineoplastic evaluation and in silico prediction of ADMETox properties. Bioorganic Chemistry, 2018, 80, 585-590.	4.1	9
12	In vitro and in vivo antineoplastic and immunological effects of pterocarpanquinone LQB-118. Investigational New Drugs, 2016, 34, 541-551.	2.6	7
13	Synthesis of new α-Aryl-α-tetralones and α-Fluoro-α-aryl-α-tetralones, preliminary antiproliferative evaluation on drug resistant cell lines and in silico prediction of ADMETox properties. Bioorganic Chemistry, 2021, 110, 104790.	4.1	6
14	Intrinsic and Chemotherapeutic Stressors Modulate ABCC-Like Transport in Trypanosoma cruzi. Molecules, 2021, 26, 3510.	3.8	2
15	Insights into the Biological Evaluation of Pterocarpanquinones and Carbapterocarpans with Anti-tumor Activity against MDR Leukemias. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 29-37.	1.7	2
16	Detachment of Hexokinase II From Mitochondria Promotes Collateral Sensitivity in Multidrug Resistant Chronic Myeloid Leukemia Cells. Frontiers in Oncology, 0, 12, .	2.8	1