Soumaya Ben-Aicha Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273872/publications.pdf

Version: 2024-02-01

26 561 12 20 papers citations h-index g-index

26 26 26 1190 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	New insights into the role of adipose tissue in thrombosis. Cardiovascular Research, 2017, 113, 1046-1054.	3.8	141
2	Advances in HDL: Much More than Lipid Transporters. International Journal of Molecular Sciences, 2020, 21, 732.	4.1	78
3	Phytosterols and Inflammation. Current Medicinal Chemistry, 2019, 26, 6724-6734.	2.4	52
4	Detrimental Effect of Hypercholesterolemia on High-Density Lipoprotein Particle RemodelingÂinÂPigs. Journal of the American College of Cardiology, 2017, 70, 165-178.	2.8	42
5	P2Y12 antagonists and cardiac repair post-myocardial infarction: global and regional heart function analysis and molecular assessments in pigs. Cardiovascular Research, 2018, 114, 1860-1870.	3.8	35
6	Intravenous Statin Administration During Myocardial Infarction Compared With Oral Post-Infarct Administration. Journal of the American College of Cardiology, 2020, 75, 1386-1402.	2.8	30
7	Intracellular platelet signalling as a target for drug development. Vascular Pharmacology, 2018, 111, 22-25.	2.1	29
8	High-density lipoprotein remodelled in hypercholesterolaemic blood induce epigenetically driven down-regulation of endothelial HIF-1 \hat{l} ± expression in a preclinical animal model. Cardiovascular Research, 2020, 116, 1288-1299.	3.8	28
9	Molecular pathways involved in the cardioprotective effects of intravenous statin administration during ischemia. Basic Research in Cardiology, 2020, 115, 2.	5.9	26
10	Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis. International Journal of Cardiology, 2018, 270, 28-35.	1.7	22
11	Assessment of in vivo versus in vitro biofilm formation of clinical methicillin-resistant Staphylococcus aureus isolates from endotracheal tubes. Scientific Reports, 2018, 8, 11906.	3.3	19
12	Peripheral blood RNA biomarkers for cardiovascular disease from bench to bedside: a position paper from the EU-CardioRNA COST action CA17129. Cardiovascular Research, 2022, 118, 3183-3197.	3.8	18
13	Intravenous Statin Administration During Ischemia Exerts Cardioprotective Effects. Journal of the American College of Cardiology, 2019, 74, 475-477.	2.8	12
14	HDL (High-Density Lipoprotein) Remodeling and Magnetic Resonance Imaging–Assessed Atherosclerotic Plaque Burden. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2481-2493.	2.4	10
15	Post-Genomic Methodologies and Preclinical Animal Models: Chances for the Translation of Cardioprotection to the Clinic. International Journal of Molecular Sciences, 2019, 20, 514.	4.1	7
16	Analysis of Neat Biofluids Obtained During Cardiac Surgery Using Nanoparticle Tracking Analysis: Methodological Considerations. Frontiers in Cell and Developmental Biology, 2020, 8, 367.	3.7	6
17	Triglyceride-induced cardiac lipotoxicity is mitigated by Silybum marianum. Atherosclerosis, 2021, 324, 91-101.	0.8	2

Animal Models of Thrombosis. , 2018, , 87-97.

#	Article	IF	CITATIONS
19	Reply to the letter by Dr. Ulas to the manuscript entitled: "Silybum marianum provides cardioprotection and limits adverse remodeling post-myocardial infarction by mitigating oxidative stress and reactive fibrosis― International Journal of Cardiology, 2018, 270, 78.	1.7	1
20	Efficacy of treatments tested in COVID-19 patients with cardiovascular disease. A meta-analysis. Perfusion (United Kingdom), 2023, 38, 373-383.	1.0	1
21	Supplementation With Spirulina Reduces Infarct Size and Ameliorates Cardiac Function in a Pig Model of STEMI. Frontiers in Pharmacology, 2022, 13, 891801.	3.5	1
22	3110Ticagrelor improves cardiac function and post-myocardial infarction healing: cardiac magnetic resonance imaging assessment of functional, anatomical and remodeling parameters. European Heart Journal, 2017, 38, .	2.2	0
23	P1748HDL and cardioprotection in the presence of cardiovascular risk factors. A cardiac magnetic resonance imaging-based study in a hypercholesterolemic pig model of ischemia/reperfusion. European Heart Journal, 2017, 38, .	2.2	O
24	P6435Omic and functional approaches reveal a deleterious impact of hypercholesterolemia in HDL particle remodelling. European Heart Journal, 2017, 38, .	2.2	0
25	P1749Silybum marianum increases myocardial salvage and attenuates reactive fibrosis improving the ventricular remodeling post-myocardial infarction. European Heart Journal, 2017, 38, .	2.2	O
26	31 Hypercholesterolemia changes HDL-miRNA signature and enhances HDL-miR126-3p and -5p delivery to endothelial cells modulating genes involved in vascular health. Cardiovascular Research, 2018, 114, S8-S8.	3.8	0