John Hartnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738684/publications.pdf

Version: 2024-02-01

1040056 888059 35 665 9 17 citations h-index g-index papers 35 35 35 465 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Measurement Science and Technology, 1999, 10, 387-392.	2.6	269
2	Invited Article: Design techniques and noise properties of ultrastable cryogenically cooled sapphire-dielectric resonator oscillators. Review of Scientific Instruments, 2008, 79, 051301.	1.3	100
3	Cryogenic sapphire oscillator with exceptionally high long-term frequency stability. Applied Physics Letters, 2006, 89, 203513.	3.3	67
4	High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45, 830-836.	3.0	53
5	Frequency-temperature compensation in Ti/sup 3+/ and Ti/sup 4+/ doped sapphire whispering gallery mode resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 993-1000.	3.0	43
6	Atomic fountain clock with very high frequency stability employing a pulse-tube-cryocooled sapphire oscillator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1463-1469.	3.0	26
7	Long-term operation and performance of cryogenic sapphire oscillators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 2386-2393.	3.0	21
8	Cryogenic sapphire oscillator using a low-vibration design pulse-tube cryocooler: first results. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1034-1038.	3.0	21
9	Galaxy redshift abundance periodicity from Fourier analysis ofÂnumber counts N(z) using SDSS and 2dF GRS galaxy surveys. Astrophysics and Space Science, 2008, 318, 13-24.	1.4	14
10	Analysis of the rutile-ring method of frequency-temperature compensating a high-Q whispering gallery sapphire resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 812-820.	3.0	9
11	An optical beam frequency reference with 10â^14 range frequency instability. Applied Physics Letters, 2009, 95, 031103.	3.3	8
12	Unknown selection effect simulates redshift periodicity in quasar number counts from Sloan Digital Sky Survey. Astrophysics and Space Science, 2009, 324, 13-16.	1.4	8
13	Novel interferometric frequency discriminators for low noise microwave applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, 48, 743-749.	3.0	7
14	Optimum design of a high-Q room- temperature whispering-gallery-mode X-band sapphire resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1041-1047.	3.0	4
15	Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators. Journal of Applied Physics, 2017, 121, .	2.5	4
16	Carmeli's Accelerating Universe is Spatially Flat Without Dark Matter. International Journal of Theoretical Physics, 2005, 44, 485-492.	1.2	3
17	NEW MICHELSON MORLEY EXPERIMENT BASED ON HIGH-Q SPHERICAL RESONATORS. , 2002, , .		2
18	Analyses of the 2dF Deep Field. , 2010, , .		2

#	Article	IF	CITATIONS
19	CRYOGENIC SAPPHIRE OSCILLATORS., 2009,,.		1
20	Cryogenic properties of a diamond sample at microwave frequencies. , 2010, , .		1
21	Development of the cesium fountain frequency standard, NMIJ-F2. , 2014, , .		1
22	Physical association and periodicity in quasar families with SDSS and 2MRS. Astrophysics and Space Science, 2018, 363, 1.	1.4	1
23	CURRENT STATUS OF CRYOGENIC (50 K - 80 K) SECONDARY FREQUENCY STANDARDS FOR FLYWHEELS OF ATOMIC FOUNTAIN CLOCKS. , 2002, , .		0
24	Using Precision Oscillators and Interferometers to Test Fundamental Physics. , 2006, , .		0
25	The Fe3+:Al2O3 Whispering Gallery Mode Maser Oscillator. Frequency Control Symposium and Exhibition, Proceedings of the IEEE International, 2007, , .	0.0	0
26	Microwave cavity search for paraphotons. , 2010, , .		0
27	Electromagnetic energy dispersion in a 5D universe. , 2010, , .		0
28	High precision microwave interferometers and oscillators for applied and fundamental physics applications. , 2010, , .		0
29	Rotating dual cryogenic sapphire oscillators with $10 < \sup \hat{a}^2 16 < \sup $ fractional frequency stability for tests of Lorentz invariance., $2011,$		0
30	Rotating microwave cryogenic sapphire oscillators for tests of Lorentz Invariance. , 2011, , .		0
31	Ultra-high stability cryocooled sapphire microwave oscillators. , 2014, , .		0
32	Spiral Galaxy Rotation Curves in the Brane World Theory in Five Dimensions. , 2008, , 297-317.		0
33	Properties of Gravitational Waves in an Expanding Universe. , 2008, , 283-295.		0
34	Extending the Hubble Diagram to Higher Redshifts in CGR. , 2008, , 363-380.		0
35	Testing CGR against High Redshift Observations. , 2008, , 343-361.		0