
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2738446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	All-optical machine learning using diffractive deep neural networks. Science, 2018, 361, 1004-1008.	6.0	1,105
2	Phase recovery and holographic image reconstruction using deep learning in neural networks. Light: Science and Applications, 2018, 7, 17141-17141.	7.7	662
3	Emerging Technologies for Next-Generation Point-of-Care Testing. Trends in Biotechnology, 2015, 33, 692-705.	4.9	583
4	Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nature Methods, 2019, 16, 103-110.	9.0	545
5	On the use of deep learning for computational imaging. Optica, 2019, 6, 921.	4.8	495
6	Deep learning microscopy. Optica, 2017, 4, 1437.	4.8	475
7	Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods, 2012, 9, 889-895.	9.0	461
8	Lensfree microscopy on a cellphone. Lab on A Chip, 2010, 10, 1787.	3.1	448
9	Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone. ACS Nano, 2013, 7, 9147-9155.	7.3	445
10	Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab on A Chip, 2010, 10, 1417.	3.1	420
11	Inference in artificial intelligence with deep optics and photonics. Nature, 2020, 588, 39-47.	13.7	418
12	Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 2019, 3, 466-477.	11.6	397
13	Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Optics Express, 2010, 18, 11181.	1.7	381
14	Integrated rapid-diagnostic-test reader platform on a cellphone. Lab on A Chip, 2012, 12, 2678.	3.1	371
15	Optofluidic Fluorescent Imaging Cytometry on a Cell Phone. Analytical Chemistry, 2011, 83, 6641-6647.	3.2	365
16	Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone. ACS Nano, 2014, 8, 1121-1129.	7.3	361
17	Optical imaging techniques for point-of-care diagnostics. Lab on A Chip, 2013, 13, 51-67.	3.1	320
18	Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab on A Chip, 2014, 14, 3187-3194.	3.1	306

#	Article	IF	CITATIONS
19	Cellphone-Based Hand-Held Microplate Reader for Point-of-Care Testing of Enzyme-Linked Immunosorbent Assays. ACS Nano, 2015, 9, 7857-7866.	7.3	300
20	Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light: Science and Applications, 2014, 3, e122-e122.	7.7	299
21	High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16018-16022.	3.3	297
22	Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab on A Chip, 2011, 11, 315-322.	3.1	294
23	Cellphone-based devices for bioanalytical sciences. Analytical and Bioanalytical Chemistry, 2014, 406, 3263-3277.	1.9	268
24	Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst, The, 2012, 137, 2541.	1.7	256
25	Cost-effective and rapid blood analysis on a cell-phone. Lab on A Chip, 2013, 13, 1282.	3.1	253
26	Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 2018, 5, 704.	4.8	247
27	A personalized food allergen testing platform on a cellphone. Lab on A Chip, 2013, 13, 636-640.	3.1	243
28	Lensless Imaging and Sensing. Annual Review of Biomedical Engineering, 2016, 18, 77-102.	5.7	243
29	PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light: Science and Applications, 2019, 8, 23.	7.7	241
30	Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab on A Chip, 2011, 11, 1276.	3.1	238
31	Speckle reduction in optical coherence tomography images using digital filtering. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1901.	0.8	236
32	Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Science Translational Medicine, 2014, 6, 267ra175.	5.8	235
33	Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab on A Chip, 2009, 9, 777-787.	3.1	226
34	Wearable and Implantable Sensors for Biomedical Applications. Annual Review of Analytical Chemistry, 2018, 11, 127-146.	2.8	211
35	Ultra wide-field lens-free monitoring of cells on-chip. Lab on A Chip, 2008, 8, 98-106.	3.1	209
36	Lens-free optical tomographic microscope with a large imaging volume on a chip. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7296-7301.	3.3	208

#	Article	IF	CITATIONS
37	Cell separation based on size and deformability using microfluidic funnel ratchets. Lab on A Chip, 2012, 12, 2369.	3.1	205
38	Synthetic aperture-based on-chip microscopy. Light: Science and Applications, 2015, 4, e261-e261.	7.7	204
39	A unified initiative to harness Earth's microbiomes. Science, 2015, 350, 507-508.	6.0	195
40	Albumin testing in urine using a smart-phone. Lab on A Chip, 2013, 13, 4231.	3.1	180
41	Deep learning in holography and coherent imaging. Light: Science and Applications, 2019, 8, 85.	7.7	174
42	Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nature Methods, 2019, 16, 1323-1331.	9.0	172
43	Immunochromatographic Diagnostic Test Analysis Using Google Glass. ACS Nano, 2014, 8, 3069-3079.	7.3	171
44	Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab on A Chip, 2015, 15, 1284-1293.	3.1	165
45	Integrating microfluidics and lensless imaging for point-of-care testing. Biosensors and Bioelectronics, 2009, 24, 3208-3214.	5.3	162
46	Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Optics Express, 2012, 20, 3129.	1.7	160
47	Imaging and Sizing of Single DNA Molecules on a Mobile Phone. ACS Nano, 2014, 8, 12725-12733.	7.3	155
48	Design of task-specific optical systems using broadband diffractive neural networks. Light: Science and Applications, 2019, 8, 112.	7.7	150
49	Smartphoneâ€based clinical diagnostics: towards democratization of evidenceâ€based health care. Journal of Internal Medicine, 2019, 285, 19-39.	2.7	147
50	Pixel super-resolution using wavelength scanning. Light: Science and Applications, 2016, 5, e16060-e16060.	7.7	145
51	Deep Learning Enhanced Mobile-Phone Microscopy. ACS Photonics, 2018, 5, 2354-2364.	3.2	142
52	Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods, 2018, 136, 4-16.	1.9	142
53	Holographic opto-fluidic microscopy. Optics Express, 2010, 18, 27499.	1.7	138
54	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137

#	Article	IF	CITATIONS
55	Mobile Phone-Based Microscopy, Sensing, and Diagnostics. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 1-14.	1.9	137
56	Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Scientific Reports, 2014, 4, 6789.	1.6	134
57	Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nature Photonics, 2013, 7, 247-254.	15.6	133
58	Roadmap on digital holography [Invited]. Optics Express, 2021, 29, 35078.	1.7	133
59	A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light: Science and Applications, 2018, 7, 66.	7.7	131
60	Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy. Lab on A Chip, 2010, 10, 2419.	3.1	130
61	Lensless wide-field fluorescent imaging on a chip using compressive decoding of sparse objects. Optics Express, 2010, 18, 10510.	1.7	130
62	High-Throughput Lens-Free Blood Analysis on a Chip. Analytical Chemistry, 2010, 82, 4621-4627.	3.2	127
63	Edge sparsity criterion for robust holographic autofocusing. Optics Letters, 2017, 42, 3824.	1.7	122
64	Analysis of Diffractive Optical Neural Networks and Their Integration With Electronic Neural Networks. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-14.	1.9	120
65	Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nature Communications, 2017, 8, 13913.	5.8	118
66	Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. Lab on A Chip, 2012, 12, 1242.	3.1	117
67	Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Scientific Reports, 2013, 3, .	1.6	113
68	Compact and Light-Weight Automated Semen Analysis Platform Using Lensfree on-Chip Microscopy. Analytical Chemistry, 2010, 82, 8307-8312.	3.2	109
69	Terahertz pulse shaping using diffractive surfaces. Nature Communications, 2021, 12, 37.	5.8	107
70	Field-portable reflection and transmission microscopy based on lensless holography. Biomedical Optics Express, 2011, 2, 2721.	1.5	106
71	Distributed Medical Image Analysis and Diagnosis through Crowd-Sourced Games: A Malaria Case Study. PLoS ONE, 2012, 7, e37245.	1.1	106
72	Air quality monitoring using mobile microscopy and machine learning. Light: Science and Applications, 2017, 6, e17046-e17046.	7.7	105

#	Article	IF	CITATIONS
73	Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array. Lab on A Chip, 2013, 13, 4015.	3.1	103
74	Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout. ACS Nano, 2017, 11, 2934-2943.	7.3	101
75	Deep learning-based transformation of H&E stained tissues into special stains. Nature Communications, 2021, 12, 4884.	5.8	100
76	Unconventional methods of imaging: computational microscopy and compact implementations. Reports on Progress in Physics, 2016, 79, 076001.	8.1	98
77	Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light: Science and Applications, 2019, 8, 25.	7.7	98
78	Spectrally encoded single-pixel machine vision using diffractive networks. Science Advances, 2021, 7, .	4.7	96
79	Early detection and classification of live bacteria using time-lapse coherent imaging and deep learning. Light: Science and Applications, 2020, 9, 118.	7.7	93
80	On-Chip Biomedical Imaging. IEEE Reviews in Biomedical Engineering, 2013, 6, 29-46.	13.1	92
81	Sperm Trajectories Form Chiral Ribbons. Scientific Reports, 2013, 3, 1664.	1.6	92
82	Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proceedings of the IEEE, 2020, 108, 30-50.	16.4	90
83	Lensfree Holographic Imaging of Antibody Microarrays for High-Throughput Detection of Leukocyte Numbers and Function. Analytical Chemistry, 2010, 82, 3736-3744.	3.2	88
84	Cell-laden Polymeric Microspheres for Biomedical Applications. Trends in Biotechnology, 2015, 33, 653-666.	4.9	88
85	Machine learning and computation-enabled intelligent sensor design. Nature Machine Intelligence, 2021, 3, 556-565.	8.3	86
86	All-optical information-processing capacity of diffractive surfaces. Light: Science and Applications, 2021, 10, 25.	7.7	85
87	Wide field-of-view lens-free fluorescent imaging on a chip. Lab on A Chip, 2010, 10, 824.	3.1	84
88	Computational imaging without a computer: seeing through random diffusers at the speed of light. ELight, 2022, 2, .	11.9	83
89	On-chip differential interference contrast microscopy using lensless digital holography. Optics Express, 2010, 18, 4717.	1.7	82
90	Deep learning-based super-resolution in coherent imaging systems. Scientific Reports, 2019, 9, 3926.	1.6	82

#	Article	IF	CITATIONS
91	Sparsity-based multi-height phase recovery in holographic microscopy. Scientific Reports, 2016, 6, 37862.	1.6	81
92	Field-Portable Pixel Super-Resolution Colour Microscope. PLoS ONE, 2013, 8, e76475.	1.1	81
93	Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light: Science and Applications, 2020, 9, 78.	7.7	79
94	Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Advanced Photonics, 2019, 1, 1.	6.2	79
95	Highâ€ŧhroughput lensfree imaging and characterization of a heterogeneous cell solution on a chip. Biotechnology and Bioengineering, 2009, 102, 856-868.	1.7	78
96	Field-portable lensfree tomographic microscope. Lab on A Chip, 2011, 11, 2222.	3.1	78
97	Roadmap for optofluidics. Journal of Optics (United Kingdom), 2017, 19, 093003.	1.0	78
98	Resolution enhancement in scanning electron microscopy using deep learning. Scientific Reports, 2019, 9, 12050.	1.6	78
99	Characterization of natural- and organobentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behaviour in aqueous solutions. Clay Minerals, 2012, 47, 31-44.	0.2	75
100	Ensemble learning of diffractive optical networks. Light: Science and Applications, 2021, 10, 14.	7.7	75
101	Misalignment resilient diffractive optical networks. Nanophotonics, 2020, 9, 4207-4219.	2.9	75
102	High-Throughput and Label-Free Single Nanoparticle Sizing Based on Time-Resolved On-Chip Microscopy. ACS Nano, 2015, 9, 3265-3273.	7.3	73
103	Cellphone-based detection platform for rbST biomarker analysis in milk extracts using a microsphere fluorescence immunoassay. Analytical and Bioanalytical Chemistry, 2014, 406, 6857-6866.	1.9	71
104	Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7054-E7062.	3.3	70
105	Multi-angle lensless digital holography for depth resolved imaging on a chip. Optics Express, 2010, 18, 9690.	1.7	68
106	Optofluidic Tomography on a Chip. Applied Physics Letters, 2011, 98, 161109.	1.5	68
107	Lensfree Fluorescent On-Chip Imaging of Transgenic Caenorhabditis elegans Over an Ultra-Wide Field-of-View. PLoS ONE, 2011, 6, e15955.	1.1	67
108	On-Chip Cytometry using Plasmonic Nanoparticle Enhanced Lensfree Holography. Scientific Reports, 2013, 3, 1699.	1.6	66

#	Article	IF	CITATIONS
109	Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease Using a Multiplexed Paper-Based Immunoassay and Machine Learning. ACS Nano, 2020, 14, 229-240.	7.3	66
110	Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors. Npj Digital Medicine, 2020, 3, 66.	5.7	65
111	Wide-field computational color imaging using pixel super-resolved on-chip microscopy. Optics Express, 2013, 21, 12469.	1.7	63
112	Automated single-cell motility analysis on a chip using lensfree microscopy. Scientific Reports, 2014, 4, 4717.	1.6	63
113	Addressable nanoantennas with cleared hotspots for single-molecule detection on a portable smartphone microscope. Nature Communications, 2021, 12, 950.	5.8	63
114	Computational Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning. ACS Nano, 2017, 11, 2266-2274.	7.3	62
115	Quantification of plant chlorophyll content using Google Glass. Lab on A Chip, 2015, 15, 1708-1716.	3.1	59
116	Propagation phasor approach for holographic image reconstruction. Scientific Reports, 2016, 6, 22738.	1.6	59
117	Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on A Chip, 2016, 16, 4350-4358.	3.1	59
118	Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning. ACS Photonics, 2018, 5, 4617-4627.	3.2	59
119	Automated screening of sickle cells using a smartphone-based microscope and deep learning. Npj Digital Medicine, 2020, 3, 76.	5.7	57
120	Calling Biomarkers in Milk Using a Protein Microarray on Your Smartphone. PLoS ONE, 2015, 10, e0134360.	1.1	57
121	Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst, The, 2011, 136, 3512.	1.7	56
122	Lens-Free Imaging for Biological Applications. Journal of the Association for Laboratory Automation, 2012, 17, 43-49.	2.8	55
123	Recent Progress in Lyme Disease and Remaining Challenges. Frontiers in Medicine, 2021, 8, 666554.	1.2	55
124	Homogeneous Entropy-Driven Amplified Detection of Biomolecular Interactions. ACS Nano, 2016, 10, 7467-7475.	7.3	54
125	Plasmonics Enhanced Smartphone Fluorescence Microscopy. Scientific Reports, 2017, 7, 2124.	1.6	53
126	Paper-based multiplexed vertical flow assay for point-of-care testing. Lab on A Chip, 2019, 19, 1027-1034.	3.1	53

#	Article	IF	CITATIONS
127	Deep Learning Enables High-Throughput Analysis of Particle-Aggregation-Based Biosensors Imaged Using Holography. ACS Photonics, 2019, 6, 294-301.	3.2	53
128	Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view. Lab on A Chip, 2010, 10, 1109.	3.1	52
129	Lensfree super-resolution holographic microscopy using wetting films on a chip. Optics Express, 2011, 19, 17378.	1.7	52
130	Giga-Pixel Lensfree Holographic Microscopy and Tomography Using Color Image Sensors. PLoS ONE, 2012, 7, e45044.	1.1	52
131	Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab on A Chip, 2013, 13, 2028.	3.1	52
132	All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light: Science and Applications, 2021, 10, 196.	7.7	52
133	Emerging Advances to Transform Histopathology Using Virtual Staining. BME Frontiers, 2020, 2020, .	2.2	52
134	Grain size effects in polycrystalline gold nanoparticles. Nanoscale, 2012, 4, 4228.	2.8	51
135	Scale-, Shift-, and Rotation-Invariant Diffractive Optical Networks. ACS Photonics, 2021, 8, 324-334.	3.2	51
136	High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab on A Chip, 2012, 12, 4968.	3.1	50
137	Multi-color LUCAS: Lensfree On-chip Cytometry Using Tunable Monochromatic Illumination and Digital Noise Reduction. Cellular and Molecular Bioengineering, 2008, 1, 146-156.	1.0	49
138	Benchmarking Smartphone Fluorescence-Based Microscopy with DNA Origami Nanobeads: Reducing the Gap toward Single-Molecule Sensitivity. ACS Omega, 2019, 4, 637-642.	1.6	49
139	Label-free 3D computational imaging of spermatozoon locomotion, head spin and flagellum beating over a large volume. Light: Science and Applications, 2018, 7, 17121-17121.	7.7	48
140	Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope. RSC Advances, 2018, 8, 36493-36502.	1.7	48
141	Single-Shot Autofocusing of Microscopy Images Using Deep Learning. ACS Photonics, 2021, 8, 625-638.	3.2	48
142	Evaluation of a Mobile Phone-Based Microscope for Screening of Schistosoma haematobium Infection in Rural Ghana. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1468-1471.	0.6	47
143	Parasite motility is critical for virulence of African trypanosomes. Scientific Reports, 2018, 8, 9122.	1.6	47
144	Tunable Vapor-Condensed Nanolenses. ACS Nano, 2014, 8, 7340-7349.	7.3	46

#	Article	IF	CITATIONS
145	Democratization of Nanoscale Imaging and Sensing Tools Using Photonics. Analytical Chemistry, 2015, 87, 6434-6445.	3.2	45
146	Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light: Science and Applications, 2018, 7, 108.	7.7	45
147	Biomedical imaging and sensing using flatbed scanners. Lab on A Chip, 2014, 14, 3248-3257.	3.1	44
148	Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis. Scientific Reports, 2016, 6, 28793.	1.6	42
149	Polarization multiplexed diffractive computing: all-optical implementation of a group of linear transformations through a polarization-encoded diffractive network. Light: Science and Applications, 2022, 11, .	7.7	42
150	Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip. Lab on A Chip, 2013, 13, 2278.	3.1	41
151	Deep Learning-Based Holographic Polarization Microscopy. ACS Photonics, 2020, 7, 3023-3034.	3.2	41
152	Sensing of electrolytes in urine using a miniaturized paper-based device. Scientific Reports, 2020, 10, 13620.	1.6	40
153	Allâ€Optical Phase Recovery: Diffractive Computing for Quantitative Phase Imaging. Advanced Optical Materials, 2022, 10, .	3.6	40
154	Crowd-sourced BioGames: managing the big data problem for next-generation lab-on-a-chip platforms. Lab on A Chip, 2012, 12, 4102.	3.1	39
155	Lensfree On-Chip Microscopy and Tomography for Biomedical Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1059-1072.	1.9	38
156	Computational imaging, sensing and diagnostics for global health applications. Current Opinion in Biotechnology, 2014, 25, 8-16.	3.3	38
157	Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction. Scientific Reports, 2016, 6, 27811.	1.6	37
158	Towards Wireless Health: Lensless On-Chip Cytometry. Optics and Photonics News, 2008, 19, 24.	0.4	36
159	Deep learningâ€based color holographic microscopy. Journal of Biophotonics, 2019, 12, e201900107.	1.1	36
160	Biopsy-free in vivo virtual histology of skin using deep learning. Light: Science and Applications, 2021, 10, 233.	7.7	36
161	Demosaiced pixel super-resolution for multiplexed holographic color imaging. Scientific Reports, 2016, 6, 28601.	1.6	34
162	Neural Network-Based On-Chip Spectroscopy Using a Scalable Plasmonic Encoder. ACS Nano, 2021, 15, 6305-6315.	7.3	34

#	Article	IF	CITATIONS
163	Computer-Free, All-Optical Reconstruction of Holograms Using Diffractive Networks. ACS Photonics, 2021, 8, 3375-3384.	3.2	34
164	Optical Detection and Sizing of Single Nanoparticles Using Continuous Wetting Films. ACS Nano, 2013, 7, 7601-7609.	7.3	32
165	Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica, 2016, 3, 1422.	4.8	32
166	High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader. Scientific Reports, 2016, 6, 39203.	1.6	32
167	Microscopy without lenses. Physics Today, 2017, 70, 50-56.	0.3	32
168	Rapid imaging, detection, and quantification of <i>Nosema ceranae</i> spores in honey bees using mobile phone-based fluorescence microscopy. Lab on A Chip, 2019, 19, 789-797.	3.1	32
169	COVID-19 biosensing technologies. Biosensors and Bioelectronics, 2021, 178, 113046.	5.3	30
170	Holographic Image Reconstruction with Phase Recovery and Autofocusing Using Recurrent Neural Networks. ACS Photonics, 2021, 8, 1763-1774.	3.2	30
171	3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy. Science Advances, 2017, 3, e1700553.	4.7	29
172	Computational imaging of sperm locomotion. Biology of Reproduction, 2017, 97, 182-188.	1.2	29
173	Microplastics retained in stormwater control measures: Where do they come from and where do they go?. Water Research, 2022, 210, 118008.	5.3	29
174	Combined reflection and transmission microscope for telemedicine applications in field settings. Lab on A Chip, 2011, 11, 2738.	3.1	28
175	Lensfree Optofluidic Microscopy and Tomography. Annals of Biomedical Engineering, 2012, 40, 251-262.	1.3	28
176	Determination of tetracycline residues in chicken meat by liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants: Part B Surveillance, 2012, 5, 45-49.	1.3	27
177	Enzyme-Free Nucleic Acid Amplification Assay Using a Cellphone-Based Well Plate Fluorescence Reader. Analytical Chemistry, 2018, 90, 690-695.	3.2	27
178	Fractal LAMP: Label-Free Analysis of Fractal Precipitate for Digital Loop-Mediated Isothermal Nucleic Acid Amplification. ACS Sensors, 2020, 5, 385-394.	4.0	27
179	Recurrent neural network-based volumetric fluorescence microscopy. Light: Science and Applications, 2021, 10, 62.	7.7	27
180	Holographic detection of nanoparticles using acoustically actuated nanolenses. Nature Communications, 2020, 11, 171.	5.8	26

#	Article	IF	CITATIONS
181	A Mathematical Framework for Combining Decisions of Multiple Experts toward Accurate and Remote Diagnosis of Malaria Using Tele-Microscopy. PLoS ONE, 2012, 7, e46192.	1.1	25
182	Spectral Demultiplexing in Holographic and Fluorescent On-chip Microscopy. Scientific Reports, 2014, 4, 3760.	1.6	25
183	Differential Near-Field Scanning Optical Microscopy. Nano Letters, 2006, 6, 2609-2616.	4.5	24
184	Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2006, 23, 1669.	0.8	24
185	Giga-pixel fluorescent imaging over an ultra-large field-of-view using a flatbed scanner. Lab on A Chip, 2013, 13, 4460.	3.1	24
186	Iterative processing of second-order optical nonlinearity depth profiles. Optics Express, 2004, 12, 3367.	1.7	23
187	BioGames: A Platform for Crowd-Sourced Biomedical Image Analysis and Telediagnosis. Games for Health Journal, 2012, 1, 373-376.	1.1	23
188	Wide-field pathology imaging using on-chip microscopy. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2015, 467, 3-7.	1.4	23
189	Computational Sensing of <i>Staphylococcus aureus</i> on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning. ACS Nano, 2018, 12, 2554-2559.	7.3	23
190	Smartphone-imaged microfluidic biochip for measuring CD64 expression from whole blood. Analyst, The, 2019, 144, 3925-3935.	1.7	23
191	Pathological crystal imaging with singleâ€shot computational polarized light microscopy. Journal of Biophotonics, 2020, 13, e201960036.	1.1	23
192	At the intersection of optics and deep learning: statistical inference, computing, and inverse design. Advances in Optics and Photonics, 2022, 14, 209.	12.1	23
193	Lensfree sensing on a microfluidic chip using plasmonic nanoapertures. Applied Physics Letters, 2010, 97, 221107.	1.5	22
194	Lensfree on-chip imaging using nanostructured surfaces. Applied Physics Letters, 2010, 96, 171106.	1.5	22
195	Wide-field Fluorescent Microscopy and Fluorescent Imaging Flow Cytometry on a Cell-phone. Journal of Visualized Experiments, 2013, , .	0.2	22
196	Nano-imaging enabled via self-assembly. Nano Today, 2014, 9, 560-573.	6.2	22
197	Early detection of <i>E. coli</i> and total coliform using an automated, colorimetric and fluorometric fiber optics-based device. Lab on A Chip, 2019, 19, 2925-2935.	3.1	22
198	Modern Trends in Imaging VIII: Lensfree Computational Microscopy Tools for Cell and Tissue Imaging at the Point-of-Care and in Low-Resource Settings. Analytical Cellular Pathology, 2012, 35, 229-247.	0.7	21

#	Article	IF	CITATIONS
199	Computational cytometer based on magnetically modulated coherent imaging and deep learning. Light: Science and Applications, 2019, 8, 91.	7.7	21
200	Contact lens-based lysozyme detection in tear using a mobile sensor. Lab on A Chip, 2020, 20, 1493-1502.	3.1	21
201	Phenotypic Analysis of Microalgae Populations Using Label-Free Imaging Flow Cytometry and Deep Learning. ACS Photonics, 2021, 8, 1232-1242.	3.2	21
202	Cascadable all-optical NAND gates using diffractive networks. Scientific Reports, 2022, 12, 7121.	1.6	21
203	Characterization of fiber Bragg gratings using spectral interferometry based on minimum-phase functions. Journal of Lightwave Technology, 2006, 24, 1739-1757.	2.7	20
204	High-throughput analysis of horse sperms' 3D swimming patterns using computational on-chip imaging. Animal Reproduction Science, 2016, 169, 45-55.	0.5	20
205	Fluorescence coherence tomography. Optics Express, 2006, 14, 7134.	1.7	19
206	Methylation-Sensitive Loop-Mediated Isothermal Amplification (LAMP): Nucleic Acid Methylation Detection through LAMP with Mobile Fluorescence Readout. ACS Sensors, 2021, 6, 3242-3252.	4.0	19
207	Inverse Fourier transform technique to determine second-order optical nonlinearity spatial profiles. Applied Physics Letters, 2003, 82, 1362-1364.	1.5	18
208	Lensless On-chip Imaging of Cells Provides a New Tool for High-throughput Cell-Biology and Medical Diagnostics. Journal of Visualized Experiments, 2009, , .	0.2	18
209	Ti and NiPt/Ti liner silicide contacts for advanced technologies. , 2016, , .		18
210	Computational On-Chip Imaging of Nanoparticles and Biomolecules using Ultraviolet Light. Scientific Reports, 2017, 7, 44157.	1.6	18
211	Mobile Technologies for the Discovery, Analysis, and Engineering of the Global Microbiome. ACS Nano, 2018, 12, 3065-3082.	7.3	18
212	Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data. Light: Science and Applications, 2021, 10, 155.	7.7	18
213	Improved technique to determine second-order optical nonlinearity profiles using two different samples. Applied Physics Letters, 2004, 84, 681-683.	1.5	17
214	Wide-field fluorescent microscopy on a cell-phone. , 2011, 2011, 6801-4.		17
215	Lens-free computational imaging of capillary morphogenesis within three-dimensional substrates. Journal of Biomedical Optics, 2012, 17, 126018.	1.4	17
216	Educational Games for Malaria Diagnosis. Science Translational Medicine, 2014, 6, 233ed9.	5.8	17

#	Article	IF	CITATIONS
217	High-Throughput Quantification of Nanoparticle Degradation Using Computational Microscopy and Its Application to Drug Delivery Nanocapsules. ACS Photonics, 2017, 4, 1216-1224.	3.2	17
218	Label-free detection of <i>Giardia lamblia</i> cysts using a deep learning-enabled portable imaging flow cytometer. Lab on A Chip, 2020, 20, 4404-4412.	3.1	17
219	Quantitative particle agglutination assay for point-of-care testing using mobile holographic imaging and deep learning. Lab on A Chip, 2021, 21, 3550-3558.	3.1	17
220	Partially coherent lensfree tomographic microscopy [Invited]. Applied Optics, 2011, 50, H253.	2.1	16
221	Comparison of supervised machine learning algorithms for waterborne pathogen detection using mobile phone fluorescence microscopy. Nanophotonics, 2017, 6, 731-741.	2.9	16
222	Computational sensing of herpes simplex virus using a cost-effective on-chip microscope. Scientific Reports, 2017, 7, 4856.	1.6	16
223	3D imaging of sex-sorted bovine spermatozoon locomotion, head spin and flagellum beating. Scientific Reports, 2018, 8, 15650.	1.6	16
224	Enhanced light collection in fluorescence microscopy using self-assembled micro-reflectors. Scientific Reports, 2015, 5, 10999.	1.6	15
225	Flexible Plasmonic Sensors. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 12-20.	1.9	15
226	Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function. ACS Photonics, 2021, 8, 2174-2182.	3.2	15
227	Characterization of thermally poled germanosilicate thin films. Optics Express, 2004, 12, 4698.	1.7	14
228	<i>Fluorescence Interferometry</i> . Annals of the New York Academy of Sciences, 2008, 1130, 68-77.	1.8	14
229	Nucleic acid quantification in the field. Nature Biomedical Engineering, 2018, 2, 629-630.	11.6	14
230	Lensfree color imaging on a nanostructured chip using compressive decoding. Applied Physics Letters, 2010, 97, 211112.	1.5	13
231	Measurement of serum phosphate levels using a mobile sensor. Analyst, The, 2020, 145, 1841-1848.	1.7	13
232	Observation of mode coupling in bitapered air-core photonic bandgap fibers. Optics Communications, 2007, 271, 391-395.	1.0	12
233	Mobile phones create new opportunities for microbiology research and clinical applications. Future Microbiology, 2017, 12, 641-644.	1.0	12
234	Smartphone-based turbidity reader. Scientific Reports, 2019, 9, 19901.	1.6	12

#	Article	IF	CITATIONS
235	Dynamic Imaging and Characterization of Volatile Aerosols in E-Cigarette Emissions Using Deep Learning-Based Holographic Microscopy. ACS Sensors, 2021, 6, 2403-2410.	4.0	12
236	Accelerating Advances in Science, Engineering, and Medicine through Nanoscience and Nanotechnology. ACS Nano, 2017, 11, 3423-3424.	7.3	11
237	Smartphones Democratize Advanced Biomedical Instruments and Foster Innovation. Clinical Pharmacology and Therapeutics, 2018, 104, 38-41.	2.3	11
238	Low-cost and portable UV holographic microscope for high-contrast protein crystal imaging. APL Photonics, 2019, 4, 030804.	3.0	11
239	Manipulator for magnetic resonance imaging guided interventions: design, prototype and feasibility. , 0, , .		10
240	Differential near-field scanning optical microscopy. , 2007, , .		10
241	Automated, Cost-Effective Optical System for Accelerated Antimicrobial Susceptibility Testing (AST) Using Deep Learning. ACS Photonics, 2020, 7, 2527-2538.	3.2	10
242	Picolitre acoustic droplet ejection by femtosecond laser micromachined multiple-orifice membrane-based 2D ejector arrays. Electronics Letters, 2005, 41, 1219.	0.5	9
243	Detailed analysis of inverse Fourier transform techniques to uniquely infer second-order nonlinearity profile of thin films. Journal of Applied Physics, 2005, 97, 013502.	1.1	9
244	Differential Near-Field Scanning Optical Microscopy Using Sensor Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 1721-1729.	1.9	9
245	Nanofabrication Using Near-Field Optical Probes. Journal of the Association for Laboratory Automation, 2012, 17, 248-254.	2.8	9
246	Research highlights: digital assays on chip. Lab on A Chip, 2015, 15, 17-22.	3.1	9
247	Quantitative Fluorescence Sensing Through Highly Autofluorescent, Scattering, and Absorbing Media Using Mobile Microscopy. ACS Nano, 2016, 10, 8989-8999.	7.3	9
248	Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains. Journal of Biophotonics, 2019, 12, e201800335.	1.1	9
249	Optical refractometry using lensless holography and autofocusing. Optics Express, 2018, 26, 29614.	1.7	9
250	Lensfree computational microscopy tools for cell and tissue imaging at the point-of-care and in low-resource settings. Analytical Cellular Pathology, 2012, 35, 229-47.	0.7	9
251	Cylinder-assisted Maker-fringe technique. Electronics Letters, 2003, 39, 1834.	0.5	8
252	Image formation in fluorescence coherence-gated imaging through scattering media. Optics Express, 2007, 15, 2810.	1.7	8

#	Article	IF	CITATIONS
253	Off-axis holography and micro-optics improve lab-on-a-chip imaging. Light: Science and Applications, 2017, 6, e17105-e17105.	7.7	8
254	High-Throughput Screening of Encapsulated Islets Using Wide-Field Lens-Free On-Chip Imaging. ACS Photonics, 2018, 5, 2081-2086.	3.2	8
255	Opto-Fluidics Based Microscopy and Flow Cytometry on a Cell Phone for Blood Analysis. Methods in Molecular Biology, 2015, 1256, 171-190.	0.4	8
256	Investigation of haptoglobin, serum amyloid A, and some biochemical parameters in calves with omphalitis. Veterinary World, 2018, 11, 1055-1058.	0.7	8
257	Classification and reconstruction of spatially overlapping phase images using diffractive optical networks. Scientific Reports, 2022, 12, 8446.	1.6	8
258	Few-shot transfer learning for holographic image reconstruction using a recurrent neural network. APL Photonics, 2022, 7, .	3.0	8
259	Group delay recovery using iterative processing of amplitude of transmission spectra of fibre Bragg gratings. Electronics Letters, 2004, 40, 1104.	0.5	7
260	A computational method for the calculation of the feasibility boundary and clustering in differential-algebraic systems. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2005, 52, 1940-1952.	0.1	7
261	Lensfree On-chip Tomographic Microscopy Employing Multi-angle Illumination and Pixel Super-resolution. Journal of Visualized Experiments, 2012, , e4161.	0.2	7
262	High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging. Applied Physics Letters, 2015, 106, 151107.	1.5	7
263	Ferrodrop Dose-Optimized Digital Quantification of Biomolecules in Low-Volume Samples. Analytical Chemistry, 2018, 90, 8881-8888.	3.2	7
264	Mobility of polypropylene microplastics in stormwater biofilters under freeze-thaw cycles. Journal of Hazardous Materials Letters, 2022, 3, 100048.	2.0	7
265	Sub-picomolar lateral flow antigen detection with two-wavelength imaging of composite nanoparticles. Biosensors and Bioelectronics, 2022, 207, 114133.	5.3	7
266	Wearable Optical Sensors. , 2017, , 313-342.		6
267	Introduction to the special issue of optical biosensors. Nanophotonics, 2017, 6, 623-625.	2.9	6
268	Design and validation of a wide-field mobile phone microscope for the diagnosis of schistosomiasis. Travel Medicine and Infectious Disease, 2019, 30, 128-129.	1.5	6
269	Calcium pyrophosphate crystal size and characteristics. Osteoarthritis and Cartilage Open, 2021, 3, 100133.	0.9	6
270	Photonics for computing and computing for photonics. Nanophotonics, 2020, 9, 4053-4054.	2.9	6

#	Article	IF	CITATIONS
271	Simplified inverse Fourier transform technique to measure optical nonlinearity profiles using reference sample. Electronics Letters, 2004, 40, 551.	0.5	5
272	Robotic Arm for Magnetic Resonance Imaging Guided Interventions. , 0, , .		5
273	A new iterative technique to characterize and design transmission fiber Bragg gratings. Journal of Lightwave Technology, 2006, 24, 1913-1921.	2.7	5
274	Smart rapid diagnostics test reader running on a cell-phone for real-time mapping of epidemics. , 2012, ,		5
275	Deep Learning Microscopy: Enhancing Resolution, Field-of-View and Depth-of-Field of Optical Microscopy Images Using Neural Networks. , 2018, , .		5
276	Computational Image Analysis of Guided Acoustic Waves Enables Rheological Assessment of Sub-nanoliter Volumes. ACS Nano, 2019, 13, 11062-11069.	7.3	5
277	A robust holographic autofocusing criterion based on edge sparsity: Comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. , 2018, , .		5
278	Physics Potential of the e-RHIC Based FEL-Nucleus Collider. International Journal of Modern Physics E, 2003, 12, 533-541.	0.4	4
279	Second-order nonlinear thin film characterization using logarithmic Hilbert transform. , 2006, 6389, 249.		4
280	Lensfree cell holography on a chip: From holographic cell signatures to microscopic reconstruction. , 2009, , .		4
281	Lensfree Fluorescent On-Chip Imaging Using Compressive Sampling. Optics and Photonics News, 2010, 21, 27.	0.4	4
282	A game-based crowdsourcing platform for rapidly training middle and high school students to perform biomedical image analysis. , 2016, , .		4
283	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
284	Optical Technologies for Improving Healthcare in Low-Resource Settings: introduction to the feature issue. Biomedical Optics Express, 2020, 11, 3091.	1.5	4
285	Cross-Modality Deep Learning Achieves Super-Resolution in Fluorescence Microscopy. , 2019, , .		4
286	Characterization of exhaled e-cigarette aerosols in a vape shop using a field-portable holographic on-chip microscope. Scientific Reports, 2022, 12, 3175.	1.6	4
287	Smartphone-enabled rapid quantification of microplastics. Journal of Hazardous Materials Letters, 2022, 3, 100052.	2.0	4
288	Deep Learning-Enabled Detection and Classification of Bacterial Colonies Using a Thin-Film Transistor (TFT) Image Sensor. ACS Photonics, 2022, 9, 2455-2466.	3.2	4

#	Article	IF	CITATIONS
289	Transmission properties of tapered air-core photonic bandgap fibers. , 2006, , .		3
290	Quasi-phase-matched grating characterization using minimum-phase functions. Optics Communications, 2007, 269, 199-205.	1.0	3
291	Rewritable self-assembled long-period gratings in photonic bandgap fibers using microparticles. Optics Communications, 2007, 270, 225-228.	1.0	3
292	Lensless Fluorescent Microscopy on a Chip. Journal of Visualized Experiments, 2011, , .	0.2	3
293	Computational microscopy, sensing, and diagnostics (presentation video). , 2014, , .		3
294	Terahertz Pulse Shaping Using Diffractive Optical Networks. , 2021, , .		3
295	On-Chip Holographic Microscopy and its Application for Automated Semen Analysis. , 2013, , 153-171.		3
296	Handheld, lensless microscope identifies malaria parasites. SPIE Newsroom, 0, , .	0.1	3
297	Integration of Diffractive Optical Neural Networks with Electronic Neural Networks. , 2020, , .		3
298	On-chip Cytometry using Lensless Digital Holography. , 2009, , .		3
299	Mobile Microscopy and Machine Learning Provide Accurate and High-throughput Monitoring of Air Quality. , 2017, , .		3
300	Imaging Without Lenses. American Scientist, 2018, 106, 28.	0.1	3
301	Auto-focusing and extended depth-of-field holographic reconstruction using deep learning (Conference Presentation). , 2019, , .		3
302	<title>Polarization-independent mechanically induced long-period fiber gratings</title> . , 2002, , .		2
303	Mirror tunnel microscope. Applied Physics Letters, 2006, 89, 131124.	1.5	2
304	Multi-angle LUCAS for high-throughput on-chip cytometry. , 2008, 2008, 1854-5.		2
305	Lensless fluorescent on-chip microscopy using a fiber-optic taper. , 2011, 2011, 5981-4.		2
306	Portable and cost-effective pixel super-resolution on-chip microscope for telemedicine applications. , 2011, 2011, 8207-10.		2

#	Article	IF	CITATIONS
307	A game-based platform for crowd-sourcing biomedical image diagnosis and standardized remote training and education of diagnosticians. Proceedings of SPIE, 2015, , .	0.8	2
308	Misalignment Tolerant Diffractive Optical Networks. , 2021, , .		2
309	Smartphone-based sensors and imaging devices for global health. Advanced Optical Technologies, 2021, 10, 87-88.	0.9	2
310	Lensfree on-chip holography facilitates novel microscopy applications. SPIE Newsroom, 2010, , .	0.1	2
311	Robust Holographic Autofocusing Based on Edge Sparsity. , 2018, , .		2
312	DNA origami nanotools for single-molecule biosensing and superresolution microscopy. , 2019, , .		2
313	SIMBA: a new technique for ultrashort pulse characterization. , 0, , .		1
314	Frequency-domain optical coherence tomography based on minimum-phase functions. , 2006, , .		1
315	Characterisation of nonlinear thin films using logarithmic Hilbert transform. Electronics Letters, 2006, 42, 647.	0.5	1
316	The Role of Amplitude and Phase in Fluorescence Coherence Imaging: From Wide Field to Nanometer Depth Profiling. , 2007, , .		1
317	High-Throughput Cell Imaging, Counting and Characterization on a Chip. , 2008, , .		1
318	Large Depth-of-Field Lensfree Imaging and Characterization of Cells over an Ultra-Wide Field-of-View. , 2008, , .		1
319	Multi-angle lensless holography for depth resolved high-throughput imaging of cells on a chip. , 2010, , .		1
320	Compact and Cost-Effective Lensless Telemedicine Microscopy for Global Health Applications. , 2011, , .		1
321	Optofluidic on-chip tomography. , 2011, 2011, 8463-6.		1
322	Cell-Phone Based Food Allergen Testing. , 2013, , .		1
323	Computational On-Chip Imaging. , 2013, , .		1
324	Computational Imaging and Sensing for Biophotonics Applications. , 2014, , .		1

#	Article	IF	CITATIONS
325	Field portable mobile phone based fluorescence microscopy for detection of <i>Giardia lamblia</i> cysts in water samples. Proceedings of SPIE, 2015, , .	0.8	1
326	Non-Iterative Holographic Image Reconstruction and Phase Retrieval Using a Deep Convolutional Neural Network. , 2018, , .		1
327	Nanoscience and Nanotechnology at UCLA. ACS Nano, 2019, 13, 6127-6129.	7.3	1
328	Deep Learning-enabled Coherent Imaging Achieves Early Detection and Classification of Bacteria in Water Samples. , 2021, , .		1
329	Information processing capacity of diffractive surfaces. , 2021, , .		1
330	Lensfree Computational Microscopy Tools for On-Chip Imaging of Biochips. Biological and Medical Physics Series, 2013, , 71-96.	0.3	1
331	Holographic Reconstruction with Bright-field Microscopy Contrast using Cross-Modality Deep Learning. , 2019, , .		1
332	Democratization of Diagnostics and Measurement Tools through Computational Imaging and Sensing. , 2014, , .		1
333	Optofluidic Tomography. , 2011, , .		1
334	Field-Portable Lensless Holographic Microscope using Pixel Super-Resolution. , 2011, , .		1
335	Field-Portable Pixel Super-Resolution Microscopy of Dense Samples using Lensfree Holograms Recorded at Multiple Heights. , 2012, , .		1
336	Wide-field Imaging of Pathology Slides using Lensfree On-chip Microscopy. , 2015, , .		1
337	3D on-chip microscopy of optically cleared tissue. , 2018, , .		1
338	On-chip ultraviolet holography for high-throughput nanoparticle and biomolecule detection. , 2018, ,		1
339	PhaseStain: Deep Learning-based Histological Staining of Quantitative Phase Images. , 2019, , .		1
340	Deep Learning-designed Diffractive Neural Networks. , 2019, , .		1
341	Automated Screening of Sickle Cells Using a Smartphone- Based Microscope and Deep Learning. , 2020, ,		1
342	Deep Learning to Refocus 3D Images. Optics and Photonics News, 2020, 31, 57.	0.4	1

#	Article	IF	CITATIONS
343	Broadband Diffractive Neural Networks. , 2020, , .		1
344	Improving the Inference Accuracy of Diffractive Optical Neural Networks Using Class-specific Differential Detection. , 2020, , .		1
345	Color Holographic Microscopy Using a Deep Neural Network. , 2020, , .		1
346	Deep-Z: 3D Virtual Refocusing of Fluorescence Images Using Deep Learning. , 2020, , .		1
347	Design of Shift-, Scale- and Rotation Invariant Diffractive Optical Networks. , 2021, , .		1
348	Label-free imaging flow cytometry for phenotypic analysis of microalgae populations using deep learning. , 2021, , .		1
349	Editorial on COVID-19 biosensing technologies- 2d Edition. Biosensors and Bioelectronics, 2022, 212, 114340.	5.3	1
350	A novel technique to determine second-order optical nonlinearity profiles. , 2003, , .		0
351	Comparison of three inverse Fourier transform techniques to determine the second-order optical nonlinearity profile of thin films. , 2004, , .		0
352	Cylinder-assisted Maker-fringe technique to probe second-order nonlinearity profiles. , 2004, , .		0
353	Ultra-short pulse characterization using a reference laser pulse. , 2005, , .		0
354	Dependence of the induced optical second-order nonlinearity profile of poled silica samples on poling conditions. , 2005, , .		0
355	Thermally poled germanosilicate films with high second-order nonlinearity. , 2005, , .		0
356	A simple and fast technique to characterize the group delay properties of fiber Bragg gratings. , 0, , .		0
357	Characterization of fiber Bragg gratings using spectral interferometry based on minimum-phase functions. , 2006, , .		0
358	Measurement of the nonlinear coefficient profile of quasi-phase-matched gratings using iterative error-reduction algorithms. , 2006, , .		0
359	Femtosecond laser micromachined multiple-orifice two-dimensional ejector arrays for picoliter droplet ejection. , 2006, , .		0
360	Alternative data processing for frequency-domain optical coherence tomography. , 2006, , .		0

360 Alternative data processing for frequency-domain optical coherence tomography. , 2006, , .

#	Article	IF	CITATIONS
361	P572 Identification of CTX-M-type extended-spectrum β-lactamases in urine based on real-time PCR. International Journal of Antimicrobial Agents, 2007, 29, S130-S131.	1.1	Ο
362	Differential near-field scanning optical microscopy based on sensor arrays. Proceedings of SPIE, 2008, , .	0.8	0
363	High-Index Optical Materials for High-Throughput Lensfree Imaging, Counting and Sorting of Cells on a Chip. , 2008, , .		0
364	Lensfree on-chip imaging for telemedicine applications. , 2009, , .		0
365	Lensless On-Chip Fluorescent Imaging Over an Ultra Wide Field-of-View. , 2010, , .		0
366	Wide Field-of-View Lensless Imaging of Caenorhabditis Elegans On a Chip. , 2010, , .		0
367	Multi-Angle Lensfree Holographic Imaging for 3-D Cytometry on a Chip. , 2010, , .		Ο
368	Lensfree Polarization Microscopy On a Chip using Incoherent Digital Holography. , 2010, , .		0
369	Lensless On-Chip Color Imaging using Nano-structured Surfaces and Compressive Decoding. , 2011, , .		Ο
370	Wide-field Lensless Fluorescent Imaging of Transgenic Caenorhabditis Elegans On a Chip. , 2011, , .		0
371	Lensfree Imaging of Dense Samples using Holograms Recorded at Multiple Heights. , 2012, , .		0
372	Lensfree on-chip microscopy and tomography. , 2012, , .		0
373	Lensfree computational imaging. , 2013, , .		Ο
374	Field-portable lensfree holographic color microscope for telemedicine applications. , 2013, , .		0
375	Lensfree holographic imaging discovers chiral ribbon trajectories of sperms. , 2013, , .		0
376	Lensfree holographic cytometry using plasmonic nanoparticles. , 2013, , .		0
377	Giga-pixel imaging on a chip: High numerical aperture lensfree microscopy over a wide field-of-view. , 2013, , .		Ο
378	Enhanced space-bandwidth product in lensfree on-chip microscopy. , 2013, , .		0

22

#	Article	IF	CITATIONS
379	High-throughput 3D imaging of sperm. Molecular Reproduction and Development, 2013, 80, 243-243.	1.0	0
380	Giga-pixel nanoimaging using computational on-chip microscopy. , 2013, , .		0
381	High-throughput screening of blood samples based on structured illumination on-chip imaging. , 2013, , .		Ο
382	High-throughput Imaging of Single Viruses using Self-assembled Nano-lenses and On-Chip Holography. , 2013, , .		0
383	Hand-Held and High-Throughput Biosensor with Plasmonics and Lens-Free Imaging. , 2014, , .		0
384	Fluorescent imaging over an ultra-large field-of-view of 532 cm2using a flatbed scanner. , 2014, , .		0
385	SP-005 NEXT GENERATION MICRO-ANALYSIS AND DIAGNOSIS USING COMPUTATIONAL IMAGING, CROWD-SOURCING AND GAMING. Leukemia Research, 2014, 38, S3.	0.4	Ο
386	Hand-Held Plasmonic Biosensor for High-Throughput Sensing for Point-of-Care Applications. , 2014, , .		0
387	Field-portable optofluidic plasmonic biosensor for wide-field and label-free monitoring of molecular interactions. , 2015, , .		Ο
388	Democratization of Next-Generation Imaging, Sensing and Diagnostics Tools Through Computational Photonics. , 2015, , .		0
389	Democratization of Next-Generation Imaging, Diagnostics and Measurement Tools through Computational Photonics. Biophysical Journal, 2015, 108, 371a.	0.2	0
390	Democratization of next-generation imaging, sensing, and diagnostics tools through computational photonics (Presentation Recording). , 2015, , .		0
391	Front Matter: Volume 9314. , 2015, , .		0
392	Wide-field nano-scale imaging on a chip. , 2015, , 9-30.		0
393	Online training and educational games for malaria diagnosis. The Lancet Global Health, 2015, 3, S4.	2.9	0
394	Field quantification of plant chlorophyll content using Google Glass. Proceedings of SPIE, 2015, , .	0.8	0
395	Google glass based immunochromatographic diagnostic test analysis. , 2015, , .		0

High-resolution On-chip Imaging using Synthetic Aperture. , 2015, , .

#	Article	IF	CITATIONS
397	Field-testing of a cost-effective mobile-phone based microscope for screening of Schistosoma haematobium infection (Conference Presentation). , 2016, , .		0

398 Cellphone-based hand-held microplate reader for point-of-care ELISA testing (Conference) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td

399	Keynote speakers: Computational imaging: How much imaging — How much computation?. , 2016, , .		0
400	Rapid and sensitive detection of waterborne pathogens using machine learning on a smartphone based fluorescence microscope (Conference Presentation). , 2016, , .		0
401	Wide-field synovial fluid imaging using polarized lens-free on-chip microscopy for point-of-care diagnostics of gout (Conference Presentation). , 2016, , .		0
402	Single DNA imaging and length quantification through a mobile phone microscope. , 2016, , .		0
403	Wavelength scanning achieves pixel super-resolution in holographic on-chip microscopy. Proceedings of SPIE, 2016, , .	0.8	0
404	Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging. Proceedings of SPIE, 2017, , .	0.8	0
405	Yeast viability and concentration analysis using lens-free computational microscopy and machine learning. , 2017, , .		0
406	Cost-effective and label-free holographic biosensor for detection of herpes simplex virus (Conference Presentation). , 2017, , .		0
407	Super-resolution through out-of-focus imaging in lens-based microscopy (Conference Presentation). , 2017, , .		0
408	Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation). , 2017, , .		0
409	A cost-effective smartphone-based antimicrobial susceptibility test reader for drug resistance testing (Conference Presentation). , 2017, , .		0
410	High resolution computational on-chip imaging of biological samples using sparsity constraint (Conference Presentation). , 2017, , .		0
411	A survey of supervised machine learning models for mobile-phone based pathogen identification and classification. , 2017, , .		0
412	Pixel Super-Resolution in Coherent Microscopy Systems Through Out-of-Focus Imaging. , 2017, , .		0
413	Deep Neural Network-Based Phase-Recovery and Auto-Focusing Extend the Depth-of-Field in Digital Holography. , 2018, , .		0
414	Generative Adversarial Networks Enable Cross-Modality Super-Resolution in Fluorescence Microscopy. Microscopy and Microanalysis, 2019, 25, 1228-1229.	0.2	0

#	Article	IF	CITATIONS
415	Future Physicians and Cosmetic Medical Interventions. European Journal of Public Health, 2019, 29, .	0.1	0
416	Deep-learning-enabled Holographic Polarization Microscopy. , 2021, , .		0
417	Single-Pixel Machine Vision Using Spectral Encoding Through Diffractive Optical Networks. , 2021, , .		0
418	Volumetric fluorescence microscopy using convolutional recurrent neural networks. , 2021, , .		0
419	Introduction to Special Biomedical Optical Imaging Issue. Lasers in Surgery and Medicine, 2021, 53, 747-747.	1.1	0
420	Contact lens-based sensing of lysozyme in tear fluid using a mobile well-plate reader. , 2021, , .		0
421	Neural network-based single-shot autofocusing of microscopy images. , 2021, , .		0
422	Improved Fourier transform technique to determine secondorder optical nonlinearity profiles. , 2003, , .		0
423	Smart technology for global access to healthcare. SPIE Newsroom, 2010, 2, 1-2.	0.1	0
424	Lensfree Microscopy On a Chip. , 2011, , .		0
425	Plasmonic Nano-Apertures for Lensfree On-chip Sensing. , 2011, , .		0
426	Lensfree Holographic Microscopy for Global Health Applications. , 2011, , .		0
427	Lensless Microscopy and Sensing on a Chip. , 2011, , .		0
428	Compact and Cost-effective Lensfree Reflection and Transmission Microscopy on Chip. , 2011, , .		0
429	Lensless Tomographic Microscopy on a Chip. , 2011, , .		0
430	High-resolution Holographic Opto-fluidic Microscope On a Chip. , 2011, , .		0
431	10.1063/1.3548564.1.,2011,,.		0
432	Multi-angle illumination with pixel super-resolution enables lensfree on-chip tomography. SPIE Newsroom, 0, , .	0.1	0

#	Article	IF	CITATIONS
433	Fluorescent flow-cytometry on a cell-phone. , 2012, , .		0
434	Lensfree On-Chip Microscopy and Tomography Toward Telemedicine Applications. , 2012, , .		0
435	Lensfree 3D Tracking of Sperms at High-throughput. , 2012, , .		0
436	Computational On-Chip Imaging Toward Telemedicine Applications. , 2013, , .		0
437	Self-Assembled Nanolens Formation for Widefield Computational Imaging of Nanoparticles on a Chip. , 2013, , .		0
438	Computational On-Chip Imaging Toward Telemedicine Applications. , 2013, , .		0
439	Computational Imaging On a Chip. , 2013, , .		Ο
440	Single Nanoparticle and Virus Detection Using a Smart Phone Based Fluorescence Microscope. , 2014, ,		0
441	Google Glass-based Rapid Analysis of Immuno-chromatographic Diagnostic Tests. , 2015, , .		0
442	Field-Portable Nanoparticle and Virus Sizing Enabled by On-Chip Microscopy and Vapor-Condensed Nanolenses. , 2015, , .		0
443	Self-assembled micro-reflectors for signal enhancement in fluorescence microscopy. , 2015, , .		0
444	High-throughput Lensfree Ion-Track Analysis for Laser-Driven Accelerators. , 2015, , .		0
445	Field-portable Smartphone Microscopy Platform for Wide-field Imaging and Sizing of Single DNA molecules. , 2015, , .		0
446	High-numerical-aperture lens-free on-chip imaging using synthetic aperture. SPIE Newsroom, 0, , .	0.1	0
447	Wavelength Scanning based Pixel Super-Resolution. , 2016, , .		0
448	A Smartphone-based Microplate Reader for Point-of-Care ELISA Quantification. , 2016, , .		0
449	Multiplexed Color Imaging Using Demosaiced Pixel Super-Resolution. , 2016, , .		0
450	Fusion of lens-free and lens-based microscope images for accurate color imaging. , 2016, , .		0

Fusion of lens-free and lens-based microscope images for accurate color imaging. , 2016, , . 450

#	Article	IF	CITATIONS
451	Automated Detection and Enumeration of Waterborne Pathogens Using Mobile Phone Microscopy and Machine Learning. , 2017, , .		0
452	Sparsity-based On-chip Holographic Microscopy. , 2017, , .		0
453	On-chip Microscopy and Nano-particle Detection Using Ultraviolet Light. , 2017, , .		0
454	Mobile Microscope for Quantitative Fluorescence Sensing Through Highly Autofluorescent and Scattering Media. , 2017, , .		0
455	Lensfree On-chip Microscopy Achieves Accurate Measurement of Yeast Cell Viability and Concentration Using Machine Learning. , 2017, , .		0
456	Holographic 3D Microscopy of Optically Cleared Tissue. , 2017, , .		0
457	Computational Sensing in Plasmonics: Design of Low-cost and Mobile Plasmonic Readers Using Machine Learning. , 2017, , .		0
458	Applications of holographic on-chip microscopy (Conference Presentation). , 2017, , .		0
459	Lab on a Cellphone. , 2017, , 43-61.		0
460	Quantification of Staphylococcus aureus on Contact Lenses using Mobile Holographic Imaging of Curved Surfaces and Machine Learning. , 2018, , .		0
461	High-throughput holographic monitoring of nanoparticle degradation for drug delivery applications. , 2018, , .		0
462	Deep Learning Enhances Mobile Microscopy. , 2018, , .		0
463	High-throughput 3D Tracking of Sperm Locomotion Reveals Head Spin and Flagellar Beating Patterns. , 2018, , .		0
464	Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy. , 2018, , .		0
465	High-throughput screening of encapsulated islets using wide-field lens-free on-chip imaging (Conference Presentation). , 2018, , .		Ο
466	Monitoring of nanoparticle degradation using holographic on-chip microscopy for drug delivery applications (Conference Presentation). , 2018, , .		0
467	Compact imaging system for quantitative fluorescence sensing through autofluorescent, scattering and absorbing media (Conference Presentation). , 2018, , .		0
468	Machine learning enabled flexible and low-cost plasmonic sensors for point-of-care sensing (Conference Presentation). , 2018, , .		0

0

#	Article	IF	CITATIONS
469	Surface-enhanced fluorescence microscopy on a smartphone (Conference Presentation). , 2018, , .		0
470	In situ detection of point mutations and targeted DNA sequencing using mobile phone microscopy (Conference Presentation). , 2018, , .		0
471	Label-free Bio-aerosol Sensing Using On-Chip Holographic Microscopy and Deep Learning. , 2019, , .		0
472	Enhancing resolution in coherent microscopy using deep learning. , 2019, , .		0
473	Holographic Microscopy with Acoustic Modulation for Detection of Nano-sized Particles and Pathogens in Solution. , 2019, , .		0
474	Portable Imaging Flow cytometer Using Deep Learning based Holographic Image Reconstruction. , 2019, , .		0
475	Particle-Aggregation Based Virus Sensor Using Deep Learning and Lensless Digital Holography. , 2019, , .		0
476	An absorbance spectrum estimation-based accurate colorization method for holographic imaging of pathology slides. , 2019, , .		0
477	High-Throughput and Label-Free Detection of Motile Parasites in Bodily Fluids Using Lensless Time-Resolved Speckle Imaging. , 2019, , .		0
478	Deep Learning Enables Virtual Histological Staining of Label-free Tissue Sections Using Auto-fluorescence. , 2019, , .		0
479	Deep Learning-based Virtual Refocusing of Fluorescence Microscopy Images for Neuron Imaging in 3D. , 2020, , .		0
480	An Automated and Cost-Effective System for Early Antimicrobial Susceptibility Testing. , 2020, , .		0
481	Computational sensing with a multiplexed vertical flow assay for high-sensitivity C-Reactive protein quantification. , 2020, , .		0
482	Resolution Enhancement in Scanning Electron Microscopy using Deep Learning. , 2020, , .		0
483	Deep Learning-Based Virtual Staining of Unlabeled Tissue Samples. , 2020, , .		0
484	Deep learning-based super-resolution and image transformation into structured illumination microscopy. , 2020, , .		0
485	Deep learning-enabled computational cytometer using magnetically-modulated coherent imaging. , 2020, , .		0

486 Ensemble Learning of Diffractive Optical Neural Networks. , 2021, , .

#	Article	IF	CITATIONS
487	Smartphone Enabled Point-of-Care Detection of Serum Biomarkers. Methods in Molecular Biology, 2022, 2393, 343-365.	0.4	0
488	Deep Learning-enabled Holographic Imaging Flow-Cytometry for Label-Free Detection of Giardia Lamblia in Water Samples. , 2021, , .		0
489	Information Processing Capacity of Diffractive Optical Processors. , 2021, , .		Ο
490	Dynamic imaging and characterization of volatile aerosols using deep learning-based holographic microscopy. , 2021, , .		0