Manuela Giovannetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737990/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Scientific Reports, 2018, 8, 4.	3.3	170
2	Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> . New Phytologist, 2009, 181, 924-937.	7.3	165
3	Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Scientific Reports, 2017, 7, 4686.	3.3	160
4	Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant and Soil, 2010, 335, 311-323.	3.7	156
5	Arbuscular Mycorrhizal Fungi and Associated Microbiota as Plant Biostimulants: Research Strategies for the Selection of the Best Performing Inocula. Agronomy, 2020, 10, 106.	3.0	141
6	Diverse bacterial communities are recruited on spores of different arbuscular mycorrhizal fungal isolates. Biology and Fertility of Soils, 2015, 51, 379-389.	4.3	111
7	Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytologist, 2012, 194, 810-822.	7.3	109
8	Mycorrhizal fungi suppress aggressive agricultural weeds. Plant and Soil, 2010, 333, 7-20.	3.7	104
9	Cellular Events Involved in Survival of Individual Arbuscular Mycorrhizal Symbionts Growing in the Absence of the Host. Applied and Environmental Microbiology, 1998, 64, 3473-3479.	3.1	94
10	Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiological Research, 2016, 183, 68-79.	5.3	90
11	Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food. Frontiers in Plant Science, 2018, 9, 1089.	3.6	90
12	Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in Microbiology, 2015, 166, 121-131.	2.1	77
13	Functional Complementarity of Arbuscular Mycorrhizal Fungi and Associated Microbiota: The Challenge of Translational Research. Frontiers in Plant Science, 2018, 9, 1407.	3.6	67
14	Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biology and Fertility of Soils, 2013, 49, 781-790.	4.3	59
15	Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods. International Journal of Food Microbiology, 2017, 250, 19-26.	4.7	54
16	Globe artichoke as a functional food. Mediterranean Journal of Nutrition and Metabolism, 2010, 3, 197-201.	0.5	51
17	Bacteria Associated With a Commercial Mycorrhizal Inoculum: Community Composition and Multifunctional Activity as Assessed by Illumina Sequencing and Culture-Dependent Tools. Frontiers in Plant Science, 2018, 9, 1956.	3.6	50
18	Globe artichoke as a functional food. Mediterranean Journal of Nutrition and Metabolism, 2010, 3, 197-201.	0.5	48

Manuela Giovannetti

#	Article	IF	CITATIONS
19	Unveiling hákarl: A study of the microbiota of the traditional Icelandic fermented fish. Food Microbiology, 2019, 82, 560-572.	4.2	41
20	Mycorrhizal networks facilitate the colonization of legume roots by a symbiotic nitrogen-fixing bacterium. Mycorrhiza, 2020, 30, 389-396.	2.8	41
21	Time-course of appressorium formation on host plants by arbuscular mycorrhizal fungi. Mycological Research, 1993, 97, 1140-1142.	2.5	40
22	Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Scientific Reports, 2018, 8, 10235.	3.3	40
23	Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza, 2016, 26, 699-707.	2.8	39
24	Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Biology and Fertility of Soils, 2018, 54, 203-217.	4.3	39
25	Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Scientific Reports, 2020, 10, 12856.	3.3	36
26	Genetic and phenotypic diversity of geographically different isolates ofGlomus mosseae. Canadian Journal of Microbiology, 2009, 55, 242-253.	1.7	31
27	Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant and Soil, 2012, 353, 395-408.	3.7	31
28	Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. International Journal of Food Microbiology, 2019, 302, 59-68.	4.7	31
29	Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Mycorrhiza, 2016, 26, 325-332.	2.8	30
30	Responses of Vitis vinifera cv. Cabernet Sauvignon roots to the arbuscular mycorrhizal fungus Funneliformis mosseae and the plant growth-promoting rhizobacterium Ensifer meliloti include changes in volatile organic compounds. Mycorrhiza, 2020, 30, 161-170.	2.8	28
31	Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolates. Mycorrhiza, 2007, 17, 667-675.	2.8	27
32	Health-Promoting Properties of Plant Products: The Role of Mycorrhizal Fungi and Associated Bacteria. Agronomy, 2020, 10, 1864.	3.0	27
33	An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. Mycorrhiza, 2017, 27, 659-668.	2.8	25
34	Title is missing!. Plant and Soil, 2000, 226, 153-159.	3.7	24
35	Atmospheric nitrogen fixation by gliricidia trees (Gliricidia sepium (Jacq.) Kunth ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant and Soil, 2019, 435, 323-336.	3.7	23
36	The arbuscular mycorrhizal fungus Funneliformis mosseae induces changes and increases the concentration of volatile organic compounds in Vitis vinifera cv. Sangiovese leaf tissue. Plant Physiology and Biochemistry, 2020, 155, 437-443.	5.8	21

#	Article	IF	CITATIONS
37	Beneficial Plant Microorganisms Affect the Endophytic Bacterial Communities of Durum Wheat Roots as Detected by Different Molecular Approaches. Frontiers in Microbiology, 2019, 10, 2500.	3.5	20
38	Two herbicides, two fungicides and spore-associated bacteria affect Funneliformis mosseae extraradical mycelium structural traits and viability. Mycorrhiza, 2019, 29, 341-349.	2.8	18
39	Arbuscular mycorrhizal fungi induce the expression of specific retrotransposons in roots of sunflower (Helianthus annuus L.). PLoS ONE, 2019, 14, e0212371.	2.5	17
40	Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species from a heavy metal-contaminated site, downtown Venice in Italy. Mycological Progress, 2018, 17, 1213-1224.	1.4	15
41	Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil- and plant-based hyphae. Mycorrhiza, 2020, 30, 589-600.	2.8	14
42	Olive Pomace in Diet Limits Lipid Peroxidation of Sausages from Cinta Senese Swine. European Journal of Lipid Science and Technology, 2018, 120, 1700236.	1.5	11
43	Quorum sensing in rhizobia isolated from the spores of the mycorrhizal symbiont Rhizophagus intraradices. Mycorrhiza, 2018, 28, 773-778.	2.8	11
44	Gene expression in Rhizoglomus irregulare at two different time points of mycorrhiza establishment in Helianthus annuus roots, as revealed by RNA-seq analysis. Mycorrhiza, 2020, 30, 373-387.	2.8	11
45	Novel Yeasts Producing High Levels of Conjugated Linoleic Acid and Organic Acids in Fermented Doughs. Foods, 2021, 10, 2087.	4.3	11
46	Large Genetic Intraspecific Diversity of Autochthonous Lactic Acid Bacteria and Yeasts Isolated from PDO Tuscan Bread Sourdough. Applied Sciences (Switzerland), 2020, 10, 1043.	2.5	10
47	Fungal biomass production in response to elevated atmospheric CO2 in a Glomus mosseae–Prunus cerasifera model system. Mycological Progress, 2012, 11, 17-26.	1.4	9
48	Divergence of Funneliformis mosseae populations over 20Âyears of laboratory cultivation, as revealed by vegetative incompatibility and molecular analysis. Mycorrhiza, 2018, 28, 329-341.	2.8	8
49	Use of chitosan and tannins as alternatives to antibiotics to control mold growth on PDO Pecorino Toscano cheese rind. Food Microbiology, 2020, 92, 103598.	4.2	8
50	The Crosstalk Between Plants and Their Arbuscular Mycorrhizal Symbionts: A Mycocentric View. , 2017, , 285-308.		5
51	A Whole-Plant Culture Method to Study Structural and Functional Traits of Extraradical Mycelium. Methods in Molecular Biology, 2020, 2146, 33-41.	0.9	3
52	Mycorrhizal Symbionts and Associated Bacteria: Potent Allies to Improve Plant Phosphorus Availability and Food Security. Frontiers in Microbiology, 2021, 12, 797381.	3.5	2
53	Janusz BÅ,aszkowski (ed); Glomeromycota. Mycorrhiza, 2013, 23, 251-252.	2.8	1