Igor B Konovalov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmospheric Chemistry and Physics, 2011, 11, 10031-10056.	4.9	197
2	Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005. Atmospheric Chemistry and Physics, 2012, 12, 437-454.	4.9	128
3	Inverse modelling of the spatial distribution of NO _x emissions on a continental scale using satellite data. Atmospheric Chemistry and Physics, 2006, 6, 1747-1770.	4.9	127
4	Combining deterministic and statistical approaches for PM10 forecasting in Europe. Atmospheric Environment, 2009, 43, 6425-6434.	4.1	89
5	Satellite measurement based estimates of decadal changes in European nitrogen oxides emissions. Atmospheric Chemistry and Physics, 2008, 8, 2623-2641.	4.9	84
6	Constraining CO ₂ emissions from open biomass burning by satellite observations of co-emitted species: a method and its application to wildfires in Siberia. Atmospheric Chemistry and Physics, 2014, 14, 10383-10410.	4.9	69
7	Multi-annual changes of NO _x emissions in megacity regions: nonlinear trend analysis of satellite measurement based estimates. Atmospheric Chemistry and Physics, 2010, 10, 8481-8498.	4.9	68
8	Estimation of fossil-fuel CO ₂ emissions using satellite measurements of "proxy" species. Atmospheric Chemistry and Physics, 2016, 16, 13509-13540.	4.9	50
9	Comparison and evaluation of modelled and GOME measurement derived tropospheric NO ₂ columns over Western and Eastern Europe. Atmospheric Chemistry and Physics, 2005, 5, 169-190.	4.9	46
10	Multiannual changes of CO ₂ emissions in China: indirect estimates derived from satellite measurements of tropospheric NO ₂ columns. Atmospheric Chemistry and Physics, 2013, 13, 9415-9438.	4.9	45
11	The role of semi-volatile organic compounds in the mesoscale evolution of biomass burning aerosol: a modeling case study of the 2010 mega-fire event in Russia. Atmospheric Chemistry and Physics, 2015, 15, 13269-13297.	4.9	35
12	Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide. Atmospheric Chemistry and Physics, 2017, 17, 4513-4537.	4.9	34
13	Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths. Atmospheric Chemistry and Physics, 2018, 18, 14889-14924.	4.9	29
14	Significant light induced ozone loss on biomass burning aerosol: Evidence from chemistryâ€ŧransport modeling based on new laboratory studies. Geophysical Research Letters, 2012, 39, .	4.0	26
15	Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: evolution of the aerosol optical properties in Siberian wildfire plumes. Atmospheric Chemistry and Physics, 2021, 21, 357-392.	4.9	24
16	The consolidated European synthesis of CO ₂ emissions and removals for the European Union and United Kingdom: 1990–2018. Earth System Science Data, 2021, 13, 2363-2406.	9.9	23
17	Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis. Atmospheric Chemistry and Physics, 2019, 19, 12091-12119.	4.9	21
18	Toward understanding of the nonlinear nature of atmospheric photochemistry: Multiple equilibrium states in the high-latitude lower stratospheric photochemical system. Journal of Geophysical Research, 1999, 104, 3669-3689.	3.3	16

IGOR B KONOVALOV

#	Article	IF	CITATIONS
19	Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations. Atmospheric Measurement Techniques, 2021, 14, 6647-6673.	3.1	13
20	Validation of chemistry transport model of the lower atmosphere in the central European region of Russia using ground-based and satellite measurement data. Russian Meteorology and Hydrology, 2009, 34, 236-242.	1.3	12
21	WRF ARW and CHIMERE models for numerical forecasting of surface ozone concentration. Russian Meteorology and Hydrology, 2011, 36, 249-257.	1.3	9
22	Impact of the Atmospheric Photochemical Evolution of the Organic Component of Biomass Burning Aerosol on Its Radiative Forcing Efficiency: A Box Model Analysis. Atmosphere, 2021, 12, 1555.	2.3	9
23	Overview: Recent advances in the understanding of the northern Eurasian environments and of the urban air quality in China – a Pan-Eurasian Experiment (PEEX) programme perspective. Atmospheric Chemistry and Physics, 2022, 22, 4413-4469.	4.9	9
24	Application of neural networks for studying nonlinear relationships between ozone and its precursors. Journal of Geophysical Research, 2002, 107, ACH 8-1-ACH 8-14.	3.3	8
25	Regional differences in the decadal variations of atmospheric emissions of nitrogen oxides in the European part of Russia: Results of inverse modeling based on satellite data. Doklady Earth Sciences, 2007, 417, 1424-1427.	0.7	8
26	Dynamics of optical-microphysical characteristics of smokes from Siberian wildfires in the Big Aerosol Chamber at the stages of smoke generation and aging. , 2020, , .		8
27	Estimation of the Elemental to Organic Carbon Ratio in Biomass Burning Aerosol Using AERONET Retrievals. Atmosphere, 2017, 8, 122.	2.3	7
28	Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd. Russian Meteorology and Hydrology, 2011, 36, 175-184.	1.3	6
29	Modeling the concentration of pollutants using the WRF-ARW atmospheric model and CHIMERE chemistry transport model. Russian Meteorology and Hydrology, 2013, 38, 828-839.	1.3	6
30	Analysis of Brown Carbon Content and Evolution in Smokes from Siberian Forest Fires Using AERONET Measurements. Atmospheric and Oceanic Optics, 2020, 33, 267-273.	1.3	6
31	Effect of photochemical self-action of carbon-containing aerosol: Wildfires. Izvestiya - Atmospheric and Oceanic Physics, 2016, 52, 263-270.	0.9	5
32	Using Multi-Platform Satellite Observations to Study the Atmospheric Evolution of Brown Carbon in Siberian Biomass Burning Plumes. Remote Sensing, 2022, 14, 2625.	4.0	5
33	Estimation of the influence that natural fires have on air pollution in the region of Moscow megalopolis based on the combined use of chemical transport model and measurement data. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 457-467.	0.9	4
34	The model study of the wildfire impact on the spatial distribution of deposition of sulfur and nitrogen compounds in Siberia. Russian Meteorology and Hydrology, 2013, 38, 750-758.	1.3	4
35	Estimation of transboundary transport contribution to the air pollution in the far east region using the chemistry transport model. Russian Meteorology and Hydrology, 2013, 38, 150-158.	1.3	3
36	Nonlinear features of the atmospheric evolution of the absorption properties of biomass burning aerosol. , 2020, , .		3

IGOR B KONOVALOV

#	Article	IF	CITATIONS
37	Estimation of multiyear changes in nitrogen oxide emissions in megalopolises from satellite measurements. Izvestiya - Atmospheric and Oceanic Physics, 2011, 47, 201-210.	0.9	2
38	Inverse Modeling of Nitrogen Oxides Emissions from the 2010 Russian Wildfires by Using Satellite Measurements of Nitrogen Dioxide. Atmosphere, 2016, 7, 132.	2.3	2
39	Dynamics of aerosol absorption characteristics in smoke combustion of forest biomass burning at the stages of generation and aging in time. , 2021, , .		2
40	Effects of atmospheric transformations of the organic fraction of biomass burning aerosol on the radiative forcing: a box model analysis. , 2021, , .		1
41	Ozone content over the Russian federation in the second quarter of 2011. Russian Meteorology and Hydrology, 2011, 36, 638-641.	1.3	0
42	Variations in Surface Concentration of Fine Particulate Matter in Central Regions of the European Part of Russia. Russian Meteorology and Hydrology, 2019, 44, 317-325.	1.3	0
43	Satellite Monitoring of Nitrogen Oxide Emissions. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 219-234.	0.2	0
44	Changes of the absorption properties of aerosol from Siberian wildfires due to atmospheric aging: analysis of satellite observations. , 2019, , .		0
45	Modeling the absorption properties of organic carbon in biomass burning smoke in Siberia using remote sensing data. , 2020, , .		0
46	Measurements of the smoke emission chemical composition upon simulated combustion of forest fuel materials in a large aerosol chamber. , 2020, , .		0