Ken Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737816/publications.pdf Version: 2024-02-01

KEN NICHIMUDA

#	Article	IF	CITATIONS
1	Generation of Rejuvenated Antigen-Specific T Cells by Reprogramming to Pluripotency and Redifferentiation. Cell Stem Cell, 2013, 12, 114-126.	11.1	327
2	Development of Defective and Persistent Sendai Virus Vector. Journal of Biological Chemistry, 2011, 286, 4760-4771.	3.4	312
3	Genetic Variability Overrides the Impact of Parental Cell Type and Determines iPSC Differentiation Potential. Stem Cell Reports, 2016, 6, 200-212.	4.8	211
4	Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities. Cell Reports, 2016, 15, 1228-1241.	6.4	78
5	BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13057-13062.	7.1	75
6	A Safeguard System for Induced Pluripotent Stem Cell-Derived Rejuvenated T Cell Therapy. Stem Cell Reports, 2015, 5, 597-608.	4.8	61
7	Functional Neurons Generated from T Cell-Derived Induced Pluripotent Stem Cells for Neurological Disease Modeling. Stem Cell Reports, 2016, 6, 422-435.	4.8	56
8	Simple and effective generation of transgene-free induced pluripotent stem cells using an auto-erasable Sendai virus vector responding to microRNA-302. Stem Cell Research, 2017, 23, 13-19.	0.7	56
9	Interspecific <i>in vitro</i> assay for the chimera-forming ability of human pluripotent stem cells. Development (Cambridge), 2015, 142, 3222-30.	2.5	53
10	Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming. International Journal of Molecular Sciences, 2019, 20, 2254.	4.1	47
11	Manipulation of KLF4 Expression Generates iPSCs Paused at Successive Stages of Reprogramming. Stem Cell Reports, 2014, 3, 915-929.	4.8	42
12	Persistent and Stable Gene Expression by a Cytoplasmic RNA Replicon Based on a Noncytopathic Variant Sendai Virus. Journal of Biological Chemistry, 2007, 282, 27383-27391.	3.4	39
13	A Role for KLF4 in Promoting the Metabolic Shift via TCL1 during Induced Pluripotent Stem Cell Generation. Stem Cell Reports, 2017, 8, 787-801.	4.8	36
14	Advanced Feeder-Free Generation of Induced Pluripotent Stem Cells Directly From Blood Cells. Stem Cells Translational Medicine, 2014, 3, 1402-1409.	3.3	31
15	Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Research and Therapy, 2019, 10, 185.	5.5	28
16	Status of KRAS in iPSCs Impacts upon Self-Renewal and DifferentiationÂPropensity. Stem Cell Reports, 2018, 11, 380-394.	4.8	27
17	The RNA Binding Complexes NF45-NF90 and NF45-NF110 Associate Dynamically with the c-fos Gene and Function as Transcriptional Coactivators. Journal of Biological Chemistry, 2015, 290, 26832-26845.	3.4	24
18	Generation of Footprint-Free Canine Induced Pluripotent Stem Cells Using Auto-Erasable Sendai Virus Vector. Stem Cells and Development, 2018, 27, 1577-1586.	2.1	23

Ken Nishimura

#	Article	IF	CITATIONS
19	Targeted reversion of induced pluripotent stem cells from patients with human cleidocranial dysplasia improves bone regeneration in a rat calvarial bone defect model. Stem Cell Research and Therapy, 2018, 9, 12.	5.5	23
20	Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells. Scientific Reports, 2019, 9, 1777.	3.3	17
21	An inhibitor of fibroblast growth factor receptor-1 (FGFR1) promotes late-stage terminal differentiation from NGN3+ pancreatic endocrine progenitors. Scientific Reports, 2016, 6, 35908.	3.3	16
22	Epigenetic-scale comparison of human iPSCs generated by retrovirus, Sendai virus or episomal vectors. Regenerative Therapy, 2018, 9, 71-78.	3.0	16
23	Elimination of protein aggregates prevents premature senescence in human trisomy 21 fibroblasts. PLoS ONE, 2019, 14, e0219592.	2.5	16
24	Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 252-264.	1.5	15
25	Efficient Reprogramming of Canine Peripheral Blood Mononuclear Cells into Induced Pluripotent Stem Cells. Stem Cells and Development, 2021, 30, 79-90.	2.1	13
26	Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 85-95.	1.5	12
27	An assessment of the effects of ectopic gp91phox expression in XCCD iPSC-derived neutrophils. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15046.	4.1	11
28	4-Phenylbutyrate ameliorates apoptotic neural cell death in Down syndrome by reducing protein aggregates. Scientific Reports, 2020, 10, 14047.	3.3	11
29	Gorlin syndrome-derived induced pluripotent stem cells are hypersensitive to hedgehog-mediated osteogenic induction. PLoS ONE, 2017, 12, e0186879.	2.5	10
30	Non-invasive in vivo imaging of UCP1 expression in live mice via near-infrared fluorescent protein iRFP720. PLoS ONE, 2019, 14, e0225213.	2.5	10
31	Time-course transcriptome analysis of human cellular reprogramming from multiple cell types reveals the drastic change occurs between the mid phase and the late phase. BMC Genomics, 2018, 19, 9.	2.8	9
32	Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders. Scientific Reports, 2016, 6, 26342.	3.3	8
33	Template Activating Factor-I α Regulates Retroviral Silencing during Reprogramming. Cell Reports, 2019, 29, 1909-1922.e5.	6.4	8
34	Induction of Noonan syndrome-specific human-induced pluripotent stem cells under serum-, feeder-, and integration-free conditions. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 888-895.	1.5	7
35	Canine induced pluripotent stem cell maintenance under feederâ€free and chemicallyâ€defined conditions. Molecular Reproduction and Development, 2021, 88, 395-404.	2.0	6
36	Structurally-discovered KLF4 variants accelerate and stabilize reprogramming to pluripotency. IScience, 2022, 25, 103525.	4.1	4

Ken Nishimura

#	Article	IF	CITATIONS
37	Early reactivation of clustered genes on the inactive X chromosome during somatic cell reprogramming. Stem Cell Reports, 2022, 17, 53-67.	4.8	3
38	Live cell imaging of X chromosome reactivation during somatic cell reprogramming. Biochemistry and Biophysics Reports, 2018, 15, 86-92.	1.3	2
39	Downregulation of Odd-Skipped Related 2, a Novel Regulator of Epithelial-Mesenchymal Transition, Enables Efficient Somatic Cell Reprogramming. Stem Cells, 2022, , .	3.2	2
40	Induced pluripotent stem cells from homozygous Runx2-deficient mice show poor response to vitamin D during osteoblastic differentiation. Medical Molecular Morphology, 2022, , 1.	1.0	0