
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737767/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of strain coverage by the multicomponent meningococcal serogroup B vaccine (4CMenB) in France. Human Vaccines and Immunotherapeutics, 2024, 17, 5614-5622.	3.3	5
2	Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Review of Vaccines, 2022, 21, 739-751.	4.4	7
3	Global epidemiology and changing clinical presentations of invasive meningococcal disease: a narrative review. Infectious Diseases, 2022, 54, 1-7.	2.8	16
4	Evolving strategies for meningococcal vaccination in Europe: Overview and key determinants for current and future considerations. Pathogens and Global Health, 2022, 116, 85-98.	2.3	16
5	Effect of change in vaccine schedule on pertussis epidemiology in France: a modelling and serological study. Lancet Infectious Diseases, The, 2022, 22, 265-273.	9.1	12
6	Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. Journal of Infection, 2022, 84, 289-296.	3.3	26
7	Implementation of a prospective study for enhancing surveillance of invasive bacterial infections in North Africa. International Journal of Infectious Diseases, 2022, 115, 101-105.	3.3	2
8	Care pathways in invasive meningococcal disease: a retrospective analysis of the French national public health insurance database. Human Vaccines and Immunotherapeutics, 2022, 18, 1-11.	3.3	4
9	Product review on the IMD serogroup B vaccine Bexsero®. Human Vaccines and Immunotherapeutics, 2022, 18, 1-14.	3.3	8
10	Evolution of Resistance to Antibiotics in <i>Neisseria meningitidis</i> : Any Reasons for Concern?. Journal of Infectious Diseases, 2022, , .	4.0	2
11	Equity in vaccination policies to overcome social deprivation as a risk factor for invasive meningococcal disease. Expert Review of Vaccines, 2022, 21, 659-674.	4.4	14
12	Phylogenetic Structure and Comparative Genomics of Multi-National Invasive Haemophilus influenzae Serotype a Isolates. Frontiers in Microbiology, 2022, 13, 856884.	3.5	3
13	Changes in Invasive Neisseria meningitidis and Haemophilus influenzae Infections in France during the COVID-19 Pandemic. Microorganisms, 2022, 10, 907.	3.6	20
14	One-Year Sequelae and Quality of Life in Adults with Meningococcal Meningitis: Lessons from the COMBAT Multicentre Prospective Study. Advances in Therapy, 2022, 39, 3031-3041.	2.9	2
15	Impact of mandatory vaccination against serogroup C meningococci in targeted and non-targeted populations in France. Npj Vaccines, 2022, 7, .	6.0	3
16	Immunogenicity and safety of the meningococcal B recombinant (4CMenB) vaccine in allogeneic hematopoietic cell transplantation recipients. Clinical Microbiology and Infection, 2022, 28, 1609-1614.	6.0	2
17	4CMenB Immunization Induces Serum Bactericidal Antibodies Against Non-SerogroupÂB Meningococcal Strains in Adolescents. Infectious Diseases and Therapy, 2021, 10, 307-316.	4.0	17
18	A Review of the Epidemiology of Invasive Meningococcal Disease and Vaccination Strategies in North Africa, International Journal of Infectious Diseases, 2021, 104, 189-197.	3.3	8

#	Article	IF	CITATIONS
19	Risk factors for invasive meningococcal disease: a retrospective analysis of the French national public health insurance database. Human Vaccines and Immunotherapeutics, 2021, 17, 1858-1866.	3.3	29
20	Invasive Bacterial Infections in Subjects with Genetic and Acquired Susceptibility and Impacts on Recommendations for Vaccination: A Narrative Review. Microorganisms, 2021, 9, 467.	3.6	5
21	Molecular diagnostic assays for the detection of common bacterial meningitis pathogens: A narrative review. EBioMedicine, 2021, 65, 103274.	6.1	15
22	Field Evaluation of the Performance of Two Rapid Diagnostic Tests for Meningitis in Niger and Burkina Faso. Microorganisms, 2021, 9, 832.	3.6	5
23	Factors associated with death in children with purpura fulminans: a French national prospective cohort study. Critical Care, 2021, 25, 181.	5.8	2
24	Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. The Lancet Digital Health, 2021, 3, e360-e370.	12.3	260
25	Healthcare Resource Consumption and Cost of Invasive Meningococcal Disease in France: A Study of the National Health Insurance Database. Infectious Diseases and Therapy, 2021, 10, 1607-1623.	4.0	11
26	Haemophilus influenzae type b (Hib) seroprevalence in France: impact of vaccination schedules. BMC Infectious Diseases, 2021, 21, 715.	2.9	10
27	Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap?. Infectious Diseases Now, 2021, 51, 418-423.	1.6	157
28	First case of invasive meningococcal diseaseâ€induced myopericarditis in a patient with human immunodeficiency virus infection. Internal Medicine Journal, 2021, 51, 136-137.	0.8	1
29	Looking beyond meningococcal B with the 4CMenB vaccine: the Neisseria effect. Npj Vaccines, 2021, 6, 130.	6.0	24
30	Phenotypic and genotypic characterization of meningococcal isolates in Tunis, Tunisia: High diversity and impact on vaccination strategies. International Journal of Infectious Diseases, 2020, 91, 73-78.	3.3	8
31	Evidence for Multi-Organ Infection During Experimental Meningococcal Sepsis due to ST-11 Isolates in Human Transferrin-Transgenic Mice. Microorganisms, 2020, 8, 1456.	3.6	2
32	Next generation rapid diagnostic tests for meningitis diagnosis. Journal of Infection, 2020, 81, 712-718.	3.3	16
33	Emergence of new genetic lineage, ST-9316, of Neisseria meningitidis group W in Hauts-de-France region, France 2013–2018. Journal of Infection, 2020, 80, 519-526.	3.3	5
34	Methods to evaluate serogroup B meningococcal vaccines: From predictions to real-world evidence. Journal of Infection, 2020, 81, 862-872.	3.3	25
35	Meningococcal disease surveillance in the Asia–Pacific region (2020): The global meningococcal initiative. Journal of Infection, 2020, 81, 698-711.	3.3	51
36	Analysis of Haemophilus species in patients with respiratory tract infections in Yaoundé, Cameroon. International Journal of Infectious Diseases, 2020, 100, 12-20.	3.3	2

#	Article	IF	CITATIONS
37	Impact of COVID-19 pandemic and the lockdown on invasive meningococcal disease. BMC Research Notes, 2020, 13, 399.	1.4	46
38	Targeted vaccination campaigns of teenagers after two clusters of B invasive meningococcal disease in Brittany, France, 2017. BMC Public Health, 2020, 20, 1382.	2.9	8
39	Multicomponent meningococcal serogroup B vaccination elicits cross-reactive immunity in infants against genetically diverse serogroup C, W and Y invasive disease isolates. Vaccine, 2020, 38, 7542-7550.	3.8	25
40	Geographically widespread invasive meningococcal disease caused by a ciprofloxacin resistant non-groupable strain of the ST-175 clonal complex. Journal of Infection, 2020, 81, 575-584.	3.3	9
41	Recent changes of invasive meningococcal disease in France: arguments to revise the vaccination strategy in view of those of other countries. Human Vaccines and Immunotherapeutics, 2020, 16, 2518-2523.	3.3	19
42	Strain coverage of Bexsero vaccine assessed by whole-genome sequencing over a cohort of invasive meningococci of serogroups B and W isolated in Switzerland. Vaccine, 2020, 38, 5324-5331.	3.8	7
43	First report of meningococcal ciprofloxacin resistance in Greece due to invasive isolates of the sequence type ST-3129. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2467-2470.	2.9	3
44	Community-acquired bacterial meningitis in adults: in-hospital prognosis, long-term disability and determinants of outcome in a multicentre prospective cohort. Clinical Microbiology and Infection, 2020, 26, 1192-1200.	6.0	35
45	Validation of a New Rapid Detection Test for Detection of Neisseria meningitidis A/C/W/X/Y Antigens in Cerebrospinal Fluid. Journal of Clinical Microbiology, 2020, 58, .	3.9	9
46	Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiology, 2020, 20, 92.	3.3	7
47	Transmissibility and pathogenicity of the emerging meningococcal serogroup W sequence type-11 complex South American strain: a mathematical modeling study. BMC Medicine, 2020, 18, 109.	5.5	Ο
48	Defective lytic transglycosylase disrupts cell morphogenesis by hindering cell wall de-O-acetylation in Neisseria meningitidis. ELife, 2020, 9, .	6.0	7
49	Prevention and control of meningococcal disease: Updates from the Global Meningococcal Initiative in Eastern Europe. Journal of Infection, 2019, 79, 528-541.	3.3	29
50	Clinical and Genetic Spectrum of a Large Cohort With Total and Sub-total Complement Deficiencies. Frontiers in Immunology, 2019, 10, 1936.	4.8	34
51	Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwide. Vaccine, 2019, 37, 991-1000.	3.8	64
52	High diversity of invasive Haemophilus influenzae isolates in France and the emergence of resistance to third generation cephalosporins by alteration of ftsl gene. Journal of Infection, 2019, 79, 7-14.	3.3	39
53	Phylogenetic relationships and regional spread of meningococcal strains in the meningitis belt, 2011–2016. EBioMedicine, 2019, 41, 488-496.	6.1	17
54	Diagnosis of Meningococcal Infection Using Internally Controlled Multiplex Real-Time PCR. Methods in Molecular Biology, 2019, 1969, 17-31.	0.9	3

#	Article	IF	CITATIONS
55	Whole genome sequencing reveals Trans-European spread of an epidemic Neisseria meningitidis serogroup W clone. Clinical Microbiology and Infection, 2019, 25, 765-767.	6.0	6
56	The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Review of Vaccines, 2019, 18, 15-30.	4.4	136
57	Delayed Generalized Necrotic Purpuric Rash in a C6-deficient 12-year-old Girl Treated for Group W Meningococcal Disease. Pediatric Infectious Disease Journal, 2018, 37, 1014-1015.	2.0	3
58	Differential expression of hemoglobin receptor, HmbR, between carriage and invasive isolates of <i>Neisseria meningitidis</i> contributes to virulence: lessons from a clonal outbreak. Virulence, 2018, 9, 923-929.	4.4	9
59	Meningococcal disease and control in China: Findings and updates from the Global Meningococcal Initiative (GMI). Journal of Infection, 2018, 76, 429-437.	3.3	44
60	MenB-FHbp Meningococcal GroupÂB Vaccine (Trumenba®): A Review in Active Immunization in Individuals AgedÂ≥Â10ÂYears. Drugs, 2018, 78, 257-268.	10.9	27
61	Lactobacillus paracasei feeding improves the control of secondary experimental meningococcal infection in flu-infected mice. BMC Infectious Diseases, 2018, 18, 167.	2.9	13
62	A step-by-step guide to bond cleavage and 1,6-anhydro-sugar product synthesis by a peptidoglycan-degrading lytic transglycosylase. Journal of Biological Chemistry, 2018, 293, 6000-6010.	3.4	18
63	Unusual Initial Abdominal Presentations of Invasive Meningococcal Disease. Clinical Infectious Diseases, 2018, 67, 1220-1227.	5.8	33
64	Predicting the Susceptibility of Meningococcal Serogroup B Isolates to Bactericidal Antibodies Elicited by Bivalent rLP2086, a Novel Prophylactic Vaccine. MBio, 2018, 9, .	4.1	53
65	Clonal replacement and expansion among invasive meningococcal isolates of serogroup W in France. Journal of Infection, 2018, 76, 149-158.	3.3	46
66	Is Multilocus Sequence Typing Approach Useful in Identification of Commensal Neisseria from Clinical Samples?. Molecular Genetics, Microbiology and Virology, 2018, 33, 248-253.	0.3	0
67	Characterization of meningococcal carriage isolates from Greece by whole genome sequencing: Implications for 4CMenB vaccine implementation. PLoS ONE, 2018, 13, e0209919.	2.5	6
68	Emergence of Neisseria meningitidis Serogroup W, Central African Republic, 2015–2016. Emerging Infectious Diseases, 2018, 24, 2080-2083.	4.3	8
69	Molecular Characterization of Invasive Isolates of Neisseria meningitidis in Casablanca, Morocco. Journal of Clinical Microbiology, 2018, 56, .	3.9	10
70	Analysis of the impact of corticosteroids adjuvant treatment during experimental invasive meningococcal infection in mice. Steroids, 2018, 136, 32-39.	1.8	2
71	Acquisition of Beta-Lactamase by Neisseria meningitidis through Possible Horizontal Gene Transfer. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	19
72	Primary bacterial ventriculitis in adults, an emergent diagnosis challenge: report of a meningoccal case and review of the literature. BMC Infectious Diseases, 2018, 18, 226.	2.9	21

#	Article	IF	CITATIONS
73	Establishment of the European meningococcal strain collection genome library (EMSC-GL) for the 2011 to 2012 epidemiological year. Eurosurveillance, 2018, 23, .	7.0	8
74	Community outbreak of serogroup B invasive meningococcal disease in Beaujolais, France, February to June 2016: from alert to targeted vaccination. Eurosurveillance, 2018, 23, .	7.0	17
75	Bactericidal activity of sera from adolescents vaccinated with bivalent rLP2086 against meningococcal serogroup B outbreak strains from France. Vaccine, 2017, 35, 1530-1537.	3.8	29
76	Meningococcal disease in the Middle East and Africa: Findings and updates from the Global Meningococcal Initiative. Journal of Infection, 2017, 75, 1-11.	3.3	63
77	Complement factor P is a ligand for the natural killer cell–activating receptor NKp46. Science Immunology, 2017, 2, .	11.9	103
78	Durability of immunogenicity and strain coverage of MenBvac, a meningococcal vaccine based on outer membrane vesicles: Lessons of the Normandy campaign. Vaccine, 2017, 35, 4029-4033.	3.8	16
79	Strains Responsible for Invasive Meningococcal Disease in Patients With Terminal Complement Pathway Deficiencies. Journal of Infectious Diseases, 2017, 215, 1331-1338.	4.0	35
80	Comparison of the inflammatory response of brain microvascular and peripheral endothelial cells following infection with Neisseria meningitidis. Pathogens and Disease, 2017, 75, .	2.0	16
81	The epidemiology of invasive meningococcal disease in EU/EEA countries, 2004–2014. Vaccine, 2017, 35, 2034-2041.	3.8	156
82	Resurgence of Neisseria meningitidis serogroup W ST-11 (cc11) in Madagascar, 2015–2016. International Journal of Infectious Diseases, 2017, 55, 1-3.	3.3	6
83	Immunogenicity and safety among laboratory workers vaccinated with Bexsero® vaccine. Human Vaccines and Immunotherapeutics, 2017, 13, 645-648.	3.3	9
84	The Global Meningococcal Initiative: global epidemiology, the impact of vaccines on meningococcal disease and the importance of herd protection. Expert Review of Vaccines, 2017, 16, 313-328.	4.4	194
85	Emergence of meningococci with reduced susceptibility to third-generation cephalosporins. Journal of Antimicrobial Chemotherapy, 2017, 72, 95-98.	3.0	46
86	Bulgecin A: The Key to a Broad‣pectrum Inhibitor That Targets Lytic Transglycosylases. Antibiotics, 2017, 6, 8.	3.7	30
87	A cluster of invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup W among university students, France, February to May 2017. Eurosurveillance, 2017, 22, .	7.0	21
88	Whole-Genome Characterization of Epidemic <i>Neisseria meningitidis</i> Serogroup C and Resurgence of Serogroup W, Niger, 2015. Emerging Infectious Diseases, 2016, 22, 1762-1768.	4.3	53
89	<i>Neisseria meningitidis</i> Serogroup X in Sub-Saharan Africa. Emerging Infectious Diseases, 2016, 22, 698-702.	4.3	27
90	Resistance to β-Lactams in Neisseria ssp Due to Chromosomally Encoded Penicillin-Binding Proteins. Antibiotics, 2016, 5, 35.	3.7	43

6

#	Article	IF	CITATIONS
91	Evolutionary Events Associated with an Outbreak of Meningococcal Disease in Men Who Have Sex with Men. PLoS ONE, 2016, 11, e0154047.	2.5	71
92	Transport and Catabolism of Carbohydrates by Neisseria meningitidis. Journal of Molecular Microbiology and Biotechnology, 2016, 26, 320-332.	1.0	13
93	Use of Animal Models To Support Revising Meningococcal Breakpoints of β-Lactams. Antimicrobial Agents and Chemotherapy, 2016, 60, 4023-4027.	3.2	8
94	Emergence of epidemic Neisseria meningitidis serogroup C in Niger, 2015: an analysis of national surveillance data. Lancet Infectious Diseases, The, 2016, 16, 1288-1294.	9.1	71
95	Meningococcal disease in the Asia-Pacific region: Findings and recommendations from the Global Meningococcal Initiative. Vaccine, 2016, 34, 5855-5862.	3.8	40
96	Neonatal Meningococcal Meningitis In France From 2001 To 2013. Pediatric Infectious Disease Journal, 2016, 35, 1270-1272.	2.0	14
97	The phosphocarrier protein HPr of <scp><i>N</i></scp> <i>eisseria meningitidis</i> interacts with the transcription regulator CrgA and its deletion affects capsule production, cell adhesion, and virulence. Molecular Microbiology, 2016, 100, 788-807.	2.5	17
98	Epidemiological impact and cost-effectiveness of introducing vaccination against serogroup B meningococcal disease in France. Vaccine, 2016, 34, 2240-2250.	3.8	30
99	Diagnosis of meningococcal disease. , 2016, , 45-55.		0
100	High predicted strain coverage by the multicomponent meningococcal serogroup B vaccine (4CMenB) in Poland. Vaccine, 2016, 34, 510-515.	3.8	18
101	The Phosphocarrier Protein HPr Contributes to Meningococcal Survival during Infection. PLoS ONE, 2016, 11, e0162434.	2.5	10
102	Characterization of invasive Neisseria meningit idis strains isolated at the Children's Hospital of Tunis, Tunisia. Eastern Mediterranean Health Journal, 2016, 22, 343-349.	0.8	11
103	Vaccine Failure After Meningococcal C Conjugate Vaccine May Be Linked to Decline of Bactericidal Titers and Absence of Herd Immunity. Pediatric Infectious Disease Journal, 2015, 34, 1142-1143.	2.0	4
104	Genetic and antigenic characterization of Canadian invasive Neisseria meningitidis serogroup C (MenC) case isolates in the post-MenC conjugate vaccine era, 2009–2013. Journal of Medical Microbiology, 2015, 64, 174-179.	1.8	5
105	Impact of corticosteroids on experimental meningococcal sepsis in mice. Steroids, 2015, 101, 96-102.	1.8	10
106	Meningococcal serogroup Y disease in Europe: Continuation of high importance in some European regions in 2013. Human Vaccines and Immunotherapeutics, 2015, 11, 2281-2286.	3.3	54
107	The current situation of meningococcal disease in Latin America and updated Global Meningococcal Initiative (GMI) recommendations. Vaccine, 2015, 33, 6529-6536.	3.8	49
108	Global incidence of serogroup B invasive meningococcal disease: a systematic review. Lancet Infectious Diseases, The, 2015, 15, 1334-1346.	9.1	71

#	Article	IF	CITATIONS
109	Genomic resolution of an aggressive, widespread, diverse and expanding meningococcal serogroup B, C and W lineage. Journal of Infection, 2015, 71, 544-552.	3.3	185
110	Development and Evaluation of a Dipstick Diagnostic Test for Neisseria meningitidis Serogroup X. Journal of Clinical Microbiology, 2015, 53, 449-454.	3.9	8
111	Common Cell Shape Evolution of Two Nasopharyngeal Pathogens. PLoS Genetics, 2015, 11, e1005338.	3.5	26
112	Hyperinvasive Meningococci Induce Intra-nuclear Cleavage of the NF-κB Protein p65/RelA by Meningococcal IgA Protease. PLoS Pathogens, 2015, 11, e1005078.	4.7	15
113	Genetic and antigenic characterization of Canadian invasive Neisseria meningitidis serogroup C (MenC) case isolates in the post-MenC conjugate vaccine era, 2009-2013. Journal of Medical Microbiology, 2015, 64, 174-179.	1.8	5
114	Genetic Diversity and Levels of Expression of Factor H Binding Protein among Carriage Isolates of Neisseria meningitidis. PLoS ONE, 2014, 9, e107240.	2.5	18
115	Pyrophosphate-Mediated Iron Acquisition from Transferrin in Neisseria meningitidis Does Not Require TonB Activity. PLoS ONE, 2014, 9, e107612.	2.5	7
116	Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development. Vaccine Journal, 2014, 21, 847-853.	3.1	19
117	Visualization of a substrate-induced productive conformation of the catalytic triad of theNeisseria meningitidispeptidoglycanO-acetylesterase reveals mechanistic conservation in SGNH esterase family members. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 2631-2639.	2.5	15
118	Meningococcal carriage: the dilemma of 4CMenB vaccine. Lancet, The, 2014, 384, 2088-2090.	13.7	4
119	Diversity of greek meningococcal serogroup B isolates and estimated coverage of the 4CMenB meningococcal vaccine. BMC Microbiology, 2014, 14, 111.	3.3	40
120	Lipocalin 2 in cerebrospinal fluid as a marker of acute bacterial meningitis. BMC Infectious Diseases, 2014, 14, 276.	2.9	27
121	Immunisation against meningococcus B. Lancet, The, 2013, 382, 936.	13.7	3
122	Deâ€ <i><scp>O</scp></i> â€acetylation of peptidoglycan regulates glycan chain extension and affects <i>in vivo</i> survival of <i><scp>N</scp>eisseria meningitidis</i> . Molecular Microbiology, 2013, 87, 1100-1112.	2.5	33
123	Epidemiological changes in meningococcal meningitis in Niger from 2008 to 2011 and the impact of vaccination. BMC Infectious Diseases, 2013, 13, 576.	2.9	53
124	Impact of MenBvac, an outer membrane vesicle (OMV) vaccine, on the meningococcal carriage. Vaccine, 2013, 31, 4416-4420.	3.8	33
125	Penicillin Resistance Compromises Nod1-Dependent Proinflammatory Activity and Virulence Fitness of Neisseria meningitidis. Cell Host and Microbe, 2013, 13, 735-745.	11.0	23
126	Pachymeningitis after meningococcal infection. Lancet, The, 2013, 381, 1596.	13.7	4

#	Article	IF	CITATIONS
127	Could the multicomponent meningococcal serogroup B vaccine (4CMenB) control Neisseria meningitidis capsular group X outbreaks in Africa?. Vaccine, 2013, 31, 1113-1116.	3.8	93
128	Molecular Typing of Neisseria meningitidis. , 2013, , 179-191.		0
129	Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infectious Diseases, The, 2013, 13, 416-425.	9.1	261
130	Travel-relatedNeisseria meningitidisSerogroup W135 Infection, France. Emerging Infectious Diseases, 2013, 19, 1030-1032.	4.3	10
131	Molecular typing of <i><scp>N</scp>eisseria perflava</i> clinical isolates. Apmis, 2013, 121, 843-847.	2.0	4
132	Target Gene Sequencing To Define the Susceptibility of Neisseria meningitidis to Ciprofloxacin. Antimicrobial Agents and Chemotherapy, 2013, 57, 1961-1964.	3.2	37
133	Laboratory evaluation of a rapid diagnostic test for Neisseria meningitidis serogroup A. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2013, 107, 460-461.	1.8	9
134	Draft Genome Sequence of a Neisseria meningitidis Serogroup C Isolate of Sequence Type 11 Linked to an Outbreak among Men Who Have Sex with Men. Genome Announcements, 2013, 1, .	0.8	8
135	Invasive Serogroup W Meningococcal Disease in Children. Pediatric Infectious Disease Journal, 2013, 32, 798-800.	2.0	12
136	A Multi-country Evaluation of Neisseria meningitidis Serogroup B Factor H–Binding Proteins and Implications for Vaccine Coverage in Different Age Groups. Pediatric Infectious Disease Journal, 2013, 32, 1096-1101.	2.0	36
137	Mobile Microbiological Laboratory Support for Evaluation of a Meningitis Epidemic in Northern Benin. PLoS ONE, 2013, 8, e68401.	2.5	11
138	Role of transition metal exporters in virulence: the example of Neisseria meningitidis. Frontiers in Cellular and Infection Microbiology, 2013, 3, 102.	3.9	21
139	Corticosteroid Therapy in Genotype ST-11 Meningococcal Infections. Pediatric Infectious Disease Journal, 2013, 32, 291-293.	2.0	6
140	Chronic Meningococcemia Cutaneous Lesions Involve Meningococcal Perivascular Invasion Through the Remodeling of Endothelial Barriers. Clinical Infectious Diseases, 2012, 54, 1162-1165.	5.8	38
141	Interlaboratory Standardization of the Sandwich Enzyme-Linked Immunosorbent Assay Designed for MATS, a Rapid, Reproducible Method for Estimating the Strain Coverage of Investigational Vaccines. Vaccine Journal, 2012, 19, 1609-1617.	3.1	59
142	Meningococcal serogroup Y emergence in Europe. Human Vaccines and Immunotherapeutics, 2012, 8, 1907-1911.	3.3	35
143	Increase of meningococcal serogroup Y cases in Europe: A reason for concern?. Human Vaccines and Immunotherapeutics, 2012, 8, 685-688.	3.3	22
144	Evolution of immune response against Neisseria meningitidis B:14:P1.7,16 before and after the outer membrane vesicle vaccine MenBvac. Vaccine, 2012, 30, 5059-5062.	3.8	16

#	Article	IF	CITATIONS
145	Functional impacts of the diversity of the meningococcal factor H binding protein. Vaccine, 2012, 31, 183-189.	3.8	14
146	Vaccines targeting serogroup B meningococci. Lancet Infectious Diseases, The, 2012, 12, 578-579.	9.1	4
147	The use of vaccine antigen characterization, for example by MATS, to guide the introduction of meningococcus B vaccines. Vaccine, 2012, 30, B73-B77.	3.8	14
148	Molecular Characterization of Invasive Meningococcal Isolates from Countries in the African Meningitis Belt before Introduction of a Serogroup A Conjugate Vaccine. PLoS ONE, 2012, 7, e46019.	2.5	46
149	Proficiency of PCR in hospital settings for nonculture diagnosis of invasive meningococcal infections. Clinical Laboratory, 2012, 58, 343-6.	0.5	1
150	Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. Microbiology (United Kingdom), 2011, 157, 2181-2195.	1.8	32
151	The Global Meningococcal Initiative: Recommendations for reducing the global burden of meningococcal disease. Vaccine, 2011, 29, 3363-3371.	3.8	105
152	From tailor-made to ready-to-wear meningococcal B vaccines: longitudinal study of a clonal meningococcal B outbreak. Lancet Infectious Diseases, The, 2011, 11, 455-463.	9.1	98
153	Immediate outcomes of bacterial meningitis in childhood may benefit from slow initial β-lactam infusion and oral paracetamol. Future Microbiology, 2011, 6, 1125-1129.	2.0	1
154	Enteroviral Meningitis Does Not Exclude Concurrent Bacterial Meningitis. Journal of Clinical Microbiology, 2011, 49, 3442-3443.	3.9	22
155	Late Repression of NF-κB Activity by Invasive but Not Non-Invasive Meningococcal Isolates Is Required to Display Apoptosis of Epithelial Cells. PLoS Pathogens, 2011, 7, e1002403.	4.7	13
156	A Novel Metal Transporter Mediating Manganese Export (MntX) Regulates the Mn to Fe Intracellular Ratio and Neisseria meningitidis Virulence. PLoS Pathogens, 2011, 7, e1002261.	4.7	72
157	Experimental Meningococcal Sepsis in Congenic Transgenic Mice Expressing Human Transferrin. PLoS ONE, 2011, 6, e22210.	2.5	34
158	Penicillin Binding Proteins as Danger Signals: Meningococcal Penicillin Binding Protein 2 Activates Dendritic Cells through Toll-Like Receptor 4. PLoS ONE, 2011, 6, e23995.	2.5	12
159	Association of Meningococcal Phenotypes and Genotypes With Clinical Characteristics and Mortality of Meningitis in Children. Pediatric Infectious Disease Journal, 2010, 29, 618-623.	2.0	36
160	Emergence of New VirulentNeisseria meningitidisSerogroup C Sequence Type 11 Isolates in France. Journal of Infectious Diseases, 2010, 202, 247-250.	4.0	32
161	Multicenter Study for Defining the Breakpoint for Rifampin Resistance in <i>Neisseria meningitidis</i> by <i>rpoB</i> Sequencing. Antimicrobial Agents and Chemotherapy, 2010, 54, 3651-3658.	3.2	37
162	Impact of changing epidemiology on vaccination strategies in Africa. Future Microbiology, 2010, 5, 837-839.	2.0	0

#	Article	IF	CITATIONS
163	Sequence Diversity of the Factor H Binding Protein Vaccine Candidate in Epidemiologically Relevant Strains of Serogroup B <i>Neisseria meningitidis</i> . Journal of Infectious Diseases, 2009, 200, 379-389.	4.0	180
164	Emerging drugs for acute bacterial meningitis. Expert Opinion on Emerging Drugs, 2009, 14, 381-393.	2.4	13
165	Differential Modulation of TNF-α–Induced Apoptosis by Neisseria meningitidis. PLoS Pathogens, 2009, 5, e1000405.	4.7	35
166	Influenza A Virus Neuraminidase Enhances Meningococcal Adhesion to Epithelial Cells through Interaction with Sialic Acid-Containing Meningococcal Capsules. Infection and Immunity, 2009, 77, 3588-3595.	2.2	51
167	Neisseria meningitidis : actualités biologiques. Revue Francophone Des Laboratoires, 2009, 2009, 36-38.	0.0	0
168	Molecular epidemiology of infectious diseases: the example of meningococcal disease. Research in Microbiology, 2008, 159, 62-66.	2.1	8
169	Ciprofloxacin Resistance inNeisseria meningitidis, France. Emerging Infectious Diseases, 2008, 14, 1322-1323.	4.3	39
170	Meningococcal Vaccines: To Eradicate the Disease, not the Bacterium. Hum Vaccin, 2007, 3, 149-152.	2.4	8
171	Transgenic Mice Expressing Human Transferrin as a Model for Meningococcal Infection. Infection and Immunity, 2007, 75, 5609-5614.	2.2	84
172	Target Gene Sequencing To Characterize the Penicillin G Susceptibility of Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2007, 51, 2784-2792.	3.2	103
173	Meningococcal Meningitis: Unprecedented Incidence of Serogroup XRelated Cases in 2006 in Niger. Clinical Infectious Diseases, 2007, 44, 657-663.	5.8	207
174	Use of available outer membrane vesicle vaccines to control serogroup B meningococcal outbreaks. Vaccine, 2007, 25, 2537-2538.	3.8	27
175	Standardized nonculture techniques recommended for European reference laboratories. FEMS Microbiology Reviews, 2007, 31, 84-88.	8.6	28
176	Quality assessed nonculture techniques for detection and typing of meningococci. FEMS Microbiology Reviews, 2007, 31, 37-42.	8.6	16
177	Rifampin-resistant <i>Neisseria meningitidis</i> . Emerging Infectious Diseases, 2006, 12, 859-860.	4.3	28
178	Phosphorylation and functional analysis of PilA, a protein involved in the transcriptional regulation of the pilin gene in Neisseria gonorrhoeae. Molecular Microbiology, 2006, 15, 667-677.	2.5	19
179	Conserved virulence of C to B capsule switched Neisseria meningitidis clinical isolates belonging to ET-37/ST-11 clonal complex. Microbes and Infection, 2006, 8, 191-196.	1.9	43
180	The Rise and Fall of EpidemicNeisseria meningitidisSerogroup W135 Meningitis in Burkina Faso, 2002–2005. Clinical Infectious Diseases, 2006, 43, 817-822.	5.8	75

#	Article	IF	CITATIONS
181	Differential Role of Lipooligosaccharide of Neisseria meningitidis in Virulence and Inflammatory Response during Respiratory Infection in Mice. Infection and Immunity, 2006, 74, 5506-5512.	2.2	18
182	Interlaboratory Comparison of PCR-Based Methods for Detection of Penicillin G Susceptibility in Neisseria meningitidis. Antimicrobial Agents and Chemotherapy, 2006, 50, 887-892.	3.2	11
183	Immunogenicity of meningococcal PBP2 during natural infection and protective activity of anti-PBP2 antibodies against meningococcal bacteraemia in mice. Journal of Antimicrobial Chemotherapy, 2006, 57, 924-930.	3.0	37
184	The establishment of Neisseria meningitidis serogroup W135 of the clonal complex ET-37/ST-11 as an epidemic clone and the persistence of serogroup A isolates in Burkina Faso. Microbes and Infection, 2005, 7, 645-649.	1.9	27
185	Contribution de la PCR à la surveillance microbiologique et épidémiologique des méningites bactériennes aiguës en Afrique : à propos de l'expérience d'un transfert de technologie réussi au centre Muraz de Bobo-Dioulasso, Burkina Faso. Revue Francaise Des Laboratoires, 2005, 2005, 33-40.	0.0	2
186	Interlaboratory Comparison of PCR-Based Identification and Genogrouping of Neisseria meningitidis. Journal of Clinical Microbiology, 2005, 43, 144-149.	3.9	89
187	Neisseria meningitidispili induce type-IIA phospholipase A2expression in alveolar macrophages. FEBS Letters, 2005, 579, 4923-4927.	2.8	11
188	The concept of ?tailor-made?, protein-based, outer membrane vesicle vaccines against meningococcal disease. Vaccine, 2005, 23, 2202-2205.	3.8	93
189	Continuing Diversification of Neisseria meningitidis W135 as a Primary Cause of Meningococcal Disease after Emergence of the Serogroup in 2000. Journal of Clinical Microbiology, 2004, 42, 4158-4163.	3.9	66
190	Clinical Features and Outcome of Pediatric Neisseria meningitidis Serogroup W135 Infection: A Report of 5 Cases. Clinical Infectious Diseases, 2004, 38, 1635-1637.	5.8	21
191	Analysis in vitro and in vivo of the transcriptional regulator CrgA of Neisseria meningitidis upon contact with target cells. Molecular Microbiology, 2004, 53, 917-927.	2.5	24
192	Molecular genetic methods in diagnosis and direct characterization of acute bacterial central nervous system infections. Apmis, 2004, 112, 753-770.	2.0	14
193	Diagnostic moléculaire de Neisseria meningitidis. Revue Francaise Des Laboratoires, 2004, 2004, 33-35.	0.0	0
194	Phosphorylcholineâ^'Carbohydrateâ^' Protein Conjugates Efficiently Induce Hapten-Specific Antibodies Which Recognize BothStreptococcuspneumoniaeandNeisseriameningitidis:Â A Potential Multitarget Vaccine against Respiratory Infections. Journal of Medicinal Chemistry, 2004, 47, 3916-3919.	6.4	13
195	Mécanismes moléculaires de l'émergence de souches de Neisseria meningitidis responsables d'infections invasives. Antibiotiques, 2004, 6, 128-131.	0.1	0
196	A model of meningococcal bacteremia after respiratory superinfection in influenza A virus-infected mice. FEMS Microbiology Letters, 2003, 222, 99-106.	1.8	76
197	Insertional inactivation of thelpxAgene involved in the biosynthesis of lipid A inNeisseria meningitidisresulted inlpxA/lpxA::aph-3Ā¢À€À² heterodiploids. FEMS Microbiology Letters, 2003, 226, 51-56.	1.8	6
198	The Neisseria meningitidis adhesion regulatory protein CrgA acts through oligomerization and interaction with RNA polymerase. Molecular Microbiology, 2003, 47, 135-143.	2.5	18

#	Article	IF	CITATIONS
199	Nod1 Detects a Unique Muropeptide from Gram-Negative Bacterial Peptidoglycan. Science, 2003, 300, 1584-1587.	12.6	1,388
200	Neisseria meningitidis Strains Isolated from Invasive Infections in France (1999-2002): Phenotypes and Antibiotic Susceptibility Patterns. Clinical Infectious Diseases, 2003, 37, 912-920.	5.8	76
201	Transcription Regulators Potentially Controlled by HPr Kinase/Phosphorylase in Gram-Negative Bacteria. Journal of Molecular Microbiology and Biotechnology, 2003, 5, 206-215.	1.0	61
202	Correlation between Alterations of the Penicillin-binding Protein 2 and Modifications of the Peptidoglycan Structure in Neisseria meningitidis with Reduced Susceptibility to Penicillin G. Journal of Biological Chemistry, 2003, 278, 31529-31535.	3.4	52
203	Interlaboratory Comparison of Agar Dilution and Etest Methods for Determining the MICs of Antibiotics Used in Management of Neisseria meningitidis Infections. Antimicrobial Agents and Chemotherapy, 2003, 47, 3430-3434.	3.2	56
204	Detailed Structural Analysis of the Peptidoglycan of the Human Pathogen Neisseria meningitidis. Journal of Biological Chemistry, 2003, 278, 31521-31528.	3.4	53
205	Differential Expression of Genes That Harbor a Common Regulatory Element in Neisseria meningitidis upon Contact with Target Cells. Infection and Immunity, 2003, 71, 2897-2901.	2.2	12
206	The Role of Particular Strains of Neisseria meningitidis in Meningococcal Arthritis, Pericarditis, and Pneumonia. Clinical Infectious Diseases, 2003, 37, 1639-1642.	5.8	104
207	Molecular detection and characterization of Neisseria meningitidis. Expert Review of Molecular Diagnostics, 2002, 2, 143-150.	3.1	17
208	Neisseria meningitidis Serogroups W135 and A Were Equally Prevalent among Meningitis Cases Occurring at the End of the 2001 Epidemics in Burkina Faso and Niger. Journal of Clinical Microbiology, 2002, 40, 1083-1084.	3.9	86
209	Outbreak of W135 Meningococcal Disease in 2000: Not Emergence of a New W135 Strain but Clonal Expansion within the Electophoretic Type–37 Complex. Journal of Infectious Diseases, 2002, 185, 1596-1605.	4.0	208
210	The duality of virulence and transmissibility in Neisseria meningitidis. Trends in Microbiology, 2002, 10, 376-382.	7.7	64
211	Transcriptional regulation of meningococcal gene expression upon adhesion to target cells. , 2002, , 165-182.		2
212	Down-regulation of pili and capsule of Neisseria meningitidis upon contact with epithelial cells is mediated by CrgA regulatory protein. Molecular Microbiology, 2002, 43, 1555-1564.	2.5	134
213	Recent Increase in Meningitis Caused by Neisseria meningitidis Serogroups A and W135, Yaounde, Cameroon. Emerging Infectious Diseases, 2002, 8, 327-329.	4.3	42
214	Les méningites bactériennes aiguës. Revue Francaise Des Laboratoires, 2001, 2001, 31-33.	0.0	1
215	Circumvention of Herd Immunity during an Outbreak of Meningococcal Disease Could Be Correlated to Escape Mutation in theporA Gene of Neisseria meningitidis. Infection and Immunity, 2001, 69, 1971-1973.	2.2	19
216	Nonculture Prediction of Neisseria meningitidis Susceptibility to Penicillin. Antimicrobial Agents and Chemotherapy, 2001, 45, 3625-3628.	3.2	16

#	Article	IF	CITATIONS
217	Intimate adhesion of Neisseria meningitidis to human epithelial cells is under the control of the crgA gene, a novel LysR-type transcriptional regulator. EMBO Journal, 2000, 19, 1068-1078.	7.8	91
218	NEISSERIA MENINGITIDIS INDUCES THE EXPRESSION OF THE TNF-Î \pm GENE IN ENDOTHELIAL CELLS. Cytokine, 2000, 12, 21-25.	3.2	22
219	Serogroup W135 meningococcal disease in Hajj pilgrims. Lancet, The, 2000, 356, 2159.	13.7	232
220	Simultaneous Approach for Nonculture PCR-Based Identification and Serogroup Prediction of <i>Neisseria meningitidis</i> . Journal of Clinical Microbiology, 2000, 38, 855-857.	3.9	225
221	Microevolution through DNA exchange among strains of Neisseria meningitidis isolated during an outbreak in the Czech Republic. Research in Microbiology, 1999, 150, 273-280.	2.1	58
222	Pilus-mediated adhesion of Neisseria meningitidis: the essential role of cell contact-dependent transcriptional upregulation of the PilC1 protein. Molecular Microbiology, 1998, 28, 1153-1163.	2.5	75
223	Genetic Heterogeneity of Strains of Neisseria meningitidis Belonging to Serotype 22 Isolated in the Czech Republic. Journal of Clinical Microbiology, 1998, 36, 563-565.	3.9	10
224	Control of Neisseria gonorrhoeae pilin gene expression by environmental factors: involvement of the pilA/pilB regulatory genes. Microbiology (United Kingdom), 1997, 143, 1757-1764.	1.8	17
225	Type-4 pili and meningococcal adhesiveness. Gene, 1997, 192, 149-153.	2.2	49
226	The pilA regulatory gene modulates the pilusâ€mediated adhesion of Neisseria meningitidis by controlling the transcription of pilC1. Molecular Microbiology, 1996, 19, 1073-1084.	2.5	42
227	Molecular typing of Neisseria meningitidis serogroup A using the polymerase chain reaction and restriction endonuclease pattern analysis. Molecular and Cellular Probes, 1995, 9, 297-306.	2.1	8
228	PuIO, a component of the pullulanase secretion pathway of Klebsiella oxytoca, correctly and efficiently processes gonococcal type IV prepilin in Escherichia coli. Molecular Microbiology, 1992, 6, 1887-1894.	2.5	50
229	Evolution of <i>Neisseria</i> and <i>Neisseria</i> Infections. , 0, , 465-474.		0