Alirio E. Rodrigues

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2737382/alirio-e-rodrigues-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

777	27,053 citations	77	123
papers		h-index	g-index
805	30,035 ext. citations	4.7	7.47
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
777	Machine Learning-Based Dynamic Modeling for Process Engineering Applications: A Guideline for Simulation and Prediction from Perceptron to Deep Learning. <i>Processes</i> , 2022 , 10, 250	2.9	2
776	Obtaining Aromatic Extracts from Portuguese L. by Hydrodistillation and Supercritical Fluid Extraction with CO as Potential Flavouring Additives for Food Applications <i>Molecules</i> , 2022 , 27,	4.8	2
775	Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions. <i>Journal of CO2 Utilization</i> , 2022 , 57, 101890	7.6	10
774	Modeling of a cyclic sorptiondesorption unit for continuous high temperature CO2 capture from flue gas. <i>Chemical Engineering Journal</i> , 2022 , 434, 134704	14.7	0
773	A Complete Heterogeneous Model for the Production of n-Propyl Propionate Using a Simulated Moving Bed Reactor. <i>Separations</i> , 2022 , 9, 43	3.1	
772	Shaping of ZIF-8 and MIL-53(Al) adsorbents for CH4/N2 separation. <i>Microporous and Mesoporous Materials</i> , 2022 , 331, 111648	5.3	2
771	A long short-term memory based Quasi-Virtual Analyzer for dynamic real-time soft sensing of a Simulated Moving Bed unit. <i>Applied Soft Computing Journal</i> , 2022 , 116, 108318	7.5	2
770	A novel standpoint of Pressure Swing Adsorption processes multi-objective optimization: An approach based on feasible operation region mapping. <i>Chemical Engineering Research and Design</i> , 2022 , 178, 590-601	5.5	4
769	Mapping Uncertainties of Soft-Sensors Based on Deep Feedforward Neural Networks through a Novel Monte Carlo Uncertainties Training Process. <i>Processes</i> , 2022 , 10, 409	2.9	Ο
768	Continuous Valorization of Glycerol into Solketal: From the Fixed-Bed Adsorptive Reactor to the Simulated Moving-Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2022 , 61, 4017-4030	3.9	0
767	A First Approach towards Adsorption-Oriented Physics-Informed Neural Networks: Monoclonal Antibody Adsorption Performance on an Ion-Exchange Column as a Case Study. <i>ChemEngineering</i> , 2022 , 6, 21	2.6	2
766	Continuous production of cellulose acetate microspheres for textile impregnation using a mesostructured reactor. <i>Cellulose</i> , 2022 , 29, 3595	5.5	0
765	Microwave-Assisted Lignin Wet Peroxide Oxidation to C4 Dicarboxylic Acids. <i>Industrial & amp; Engineering Chemistry Research</i> , 2022 , 61, 3570-3581	3.9	O
764	3D-printed activated carbon for post-combustion CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2022 , 335, 111818	5.3	2
763	A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization. <i>Chemical Engineering Research and Design</i> , 2022 , 180, 243-253	5.5	O
762	Pickering emulsions stabilized with chitosan/gum Arabic particles: Effect of chitosan degree of deacetylation on the physicochemical properties and cannabidiol (CBD) topical delivery. <i>Journal of Molecular Liquids</i> , 2022 , 355, 118993	6	4
761	Atmospheric water harvesting on MIL-100(Fe) upon a cyclic adsorption process. <i>Separation and Purification Technology</i> , 2022 , 290, 120803	8.3	2

(2021-2022)

760	Chemical and organoleptic properties of bread enriched with Rosmarinus officinalis L.: The potential of natural extracts obtained through green extraction methodologies as food ingredients <i>Food Chemistry</i> , 2022 , 384, 132514	8.5	2	
759	Potential of Pervaporation-Based Dehydration Processes as an Equilibrium-Limited Reactions Enhancer: Proof-of-Concept and Process Scale-up for an Acrylic Ester. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 16747-16755	3.9	0	
758	Fixed Bed Adsorption of CO2, CH4, and N2 and Their Mixtures in Potassium-Exchanged Binder-Free Beads of Y Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 15236-15247	3.9	0	
757	Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 631, 127677	5.1	9	
756	Lignin conversion into C4 dicarboxylic acids by catalytic wet peroxide oxidation using titanium silicalite-1. <i>Industrial Crops and Products</i> , 2021 , 173, 114155	5.9	2	
755	Abnormal Operation Tracking through Big-Data-Based GramBchmidt Orthogonalization: Production of n-Propyl Propionate in a Simulated Moving-Bed Reactor: A Case Study. <i>Industrial & Mamp; Engineering Chemistry Research</i> , 2021 , 60, 4060-4071	3.9		
754	Current Developments of Carbon Capture Storage and/or UtilizationLooking for Net-Zero Emissions Defined in the Paris Agreement. <i>Energies</i> , 2021 , 14, 2406	3.1	15	
753	Modeling the Effect of Cross-Link Density on Resins Catalytic Activities. <i>Industrial & Amp;</i> Engineering Chemistry Research, 2021 , 60, 6101-6110	3.9	Ο	
75 ²	Continuous Valorization of Glycerol into Solketal: Recent Advances on Catalysts, Processes, and Industrial Perspectives. <i>Sustainable Chemistry</i> , 2021 , 2, 286-324	3.6	11	
751	Perfume and Flavor Engineering: A Chemical Engineering Perspective. <i>Molecules</i> , 2021 , 26,	4.8	3	
750	Dihydroxyacetone Production: From Glycerol Catalytic Oxidation with Commercial Catalysts to Chromatographic Separation. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 10551-10565	3.9	0	
749	New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2021 , 616, 126327	5.1	17	
748	Global Approach for Simulated Moving Bed Model Identification: Design of Experiments, Uncertainty Evaluation, and Optimization Strategy Assessment. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 7904-7916	3.9	3	
747	Valorization of Lignin Side-Streams into Polyols and Rigid Polyurethane Foams Contribution to the Pulp and Paper Industry Biorefinery. <i>Energies</i> , 2021 , 14, 3825	3.1	4	
746	Radial diffusion model for fragrance materials: Prediction and validation. <i>AICHE Journal</i> , 2021 , 67, e173.	53 .6	1	
745	From an Optimal Point to an Optimal Region: A Novel Methodology for Optimization of Multimodal Constrained Problems and a Novel Constrained Sliding Particle Swarm Optimization Strategy. Mathematics, 2021, 9, 1808	2.3	4	
744	Recent advances in CO2 hydrogenation to value-added products © urrent challenges and future directions. <i>Progress in Energy and Combustion Science</i> , 2021 , 85, 100905	33.6	31	
743	Added-Value Chemicals from Lignin Oxidation. <i>Molecules</i> , 2021 , 26,	4.8	4	

742	Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths. <i>Chemical Engineering Science</i> , 2021 , 229, 116006	4.4	6
741	Residence time distribution (RTD) revisited. <i>Chemical Engineering Science</i> , 2021 , 230, 116188	4.4	17
740	Adsorption material composition and process optimization, a systematical approach based on Deep Learning. <i>IFAC-PapersOnLine</i> , 2021 , 54, 43-48	0.7	0
739	A Robust Model Predictive Controller applied to a Pressure Swing Adsorption Process: An Analysis Based on a Linear Model Mismatch. <i>IFAC-PapersOnLine</i> , 2021 , 54, 219-224	0.7	1
738	Application of Adsorption Processes for the Treatment of Diluted Industrial Effluents. <i>Engineering Materials</i> , 2021 , 175-195	0.4	O
737	Permeability coefficients and vapour pressure determination for fragrance materials. <i>International Journal of Cosmetic Science</i> , 2021 , 43, 225-234	2.7	1
736	Optimal fragrances formulation using a deep learning neural network architecture: A novel systematic approach. <i>Computers and Chemical Engineering</i> , 2021 , 150, 107344	4	9
735	An improved vacuum pressure swing adsorption process with the simulated moving bed operation mode for CH4/N2 separation to produce high-purity methane. <i>Chemical Engineering Journal</i> , 2021 , 419, 129657	14.7	6
734	Artificial Intelligence and Cyber-Physical Systems: A Review and Perspectives for the Future in the Chemical Industry. <i>AI</i> , 2021 , 2, 429-443	3.6	4
733	A review of advances in production and separation of xylene isomers. <i>Chemical Engineering and Processing: Process Intensification</i> , 2021 , 169, 108603	3.7	8
732	Designing a simple volumetric apparatus for measuring gas adsorption equilibria and kinetics of sorption. Application and validation for CO2, CH4 and N2 adsorption in binder-free beads of 4A zeolite. <i>Chemical Engineering Journal</i> , 2021 , 425, 130538	14.7	9
731	Artificial Intelligence-oriented economic non-linear model predictive control applied to a pressure swing adsorption unit: Syngas purification as a case study. <i>Separation and Purification Technology</i> , 2021 , 276, 119333	8.3	12
730	Effect of Methoxy Substituents on Wet Peroxide Oxidation of Lignin and Lignin Model Compounds: Understanding the Pathway to C4 Dicarboxylic Acids. <i>Industrial & Dicarpoxylic Acids</i> . <i>Industri</i>	3.9	6
729	Modeling RiemannLiouville fractional differential equations for diffusion and reaction in fractal porous media. <i>Journal of Mathematical Chemistry</i> , 2021 , 59, 459-475	2.1	О
728	Optimization of the Production of 1,1-Diethoxybutane by Simulated Moving Bed Reactor. <i>Processes</i> , 2021 , 9, 189	2.9	2
727	MIL-160(Al) MOFE potential in adsorptive water harvesting. <i>Adsorption</i> , 2021 , 27, 213-226	2.6	5
726	Biomass as a source of adsorbents for CO2 capture 2021 , 255-274		2
725	From a Pareto Front to Pareto Regions: A Novel Standpoint for Multiobjective Optimization. <i>Mathematics</i> , 2021 , 9, 3152	2.3	1

724	Perspectives of Scaling Up the Use of Zeolites for Selective Separations from Lab to Industry. <i>Structure and Bonding</i> , 2020 , 145-194	0.9	
723	Dynamics of a True Moving Bed Reactor: Synthesis of n-Propyl Propionate and an alternative optimization method. <i>Chemical Engineering and Processing: Process Intensification</i> , 2020 , 148, 107821	3.7	9
722	A review of aerobic glycerol oxidation processes using heterogeneous catalysts: a sustainable pathway for the production of dihydroxyacetone. <i>Catalysis Reviews - Science and Engineering</i> , 2020 , 1-90) ^{12.6}	15
721	Analysis of the oxypropylation process of a lignocellulosic material, almond shell, using the response surface methodology (RSM). <i>Industrial Crops and Products</i> , 2020 , 153, 112542	5.9	3
720	Development of Hybrid Materials with Activated Carbon and Zeolite 13X for CO2 Capture from Flue Gases by Electric Swing Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 121	979127	21 ¹ 1 ⁵
719	Optimization of a Simulated Moving Bed Unit within an Existing and Revamped Aromatics Complex with Crystallization and Toluene Methylation Units. <i>Industrial & Engineering Chemistry Research</i> , 2020, 59, 11570-11581	3.9	4
718	Enhancement of CO2 Adsorption Performance on Hydrotalcites Impregnated with Alkali Metal Nitrate Salts and Carbonate Salts. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6043-6052	3.9	9
717	Process re-intensification strategy for butyl acrylate manufacturing: Enhancement, scaling-up and economical evaluation. <i>Journal of Advanced Manufacturing and Processing</i> , 2020 , 2,	2.7	1
716	Compost from Municipal Solid Wastes as a Source of Biochar for CO2 Capture. <i>Chemical Engineering and Technology</i> , 2020 , 43, 1336-1349	2	16
715	Catalytic wet peroxide oxidation of vanillic acid as a lignin model compound towards the renewable production of dicarboxylic acids. <i>Chemical Engineering Research and Design</i> , 2020 , 159, 115-124	5.5	7
714	Single- and Multicomponent Fixed Bed Adsorption of CO2, CH4, and N2 in Binder-Free Beads of 4A Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 13724-13734	3.9	7
713	Transient analysis of true/simulated moving bed reactors: A case study on the synthesis of n-Propyl propionate. <i>Computers and Chemical Engineering</i> , 2020 , 137, 106820	4	4
712	Pervaporation and Sorption Enhanced Reactive Cyclic Processes: The Butyl Acrylate Case Study. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 2817-2827	3.9	1
711	Solketal Production in a Fixed Bed Adsorptive Reactor through the Ketalization of Glycerol. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 2805-2816	3.9	6
710	C2/C3 Hydrocarbon Separation by Pressure Swing Adsorption on MIL-100(Fe). <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 10568-10582	3.9	7
709	Simulated moving bed reactor for p-xylene production: Modeling, simulation, and optimization. <i>Chemical Engineering Science</i> , 2020 , 225, 115802	4.4	7
708	Novel Insights into Activated Carbon Derived from Municipal Solid Waste for CO2 Uptake: Synthesis, Adsorption Isotherms and Scale-up. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104069	6.8	14
707	Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. <i>International Journal of Biological Macromolecules</i> , 2020 , 147, 150-159	7.9	23

706	Novel Switch Stabilizing Model Predictive Control Strategy Applied in the Control of a Simulated Moving Bed for the Separation of Bi-Naphthol Enantiomers. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2020 , 59, 1979-1988	3.9	1
705	Fixed bed dynamics of single and multicomponent adsorption of pentane and hexane isomers in ZIF-8. <i>Separation and Purification Technology</i> , 2020 , 238, 116419	8.3	7
704	Recovery of vinyl chloride from by-streams of polyvinyl chloride production by TPSA in a multitubular adsorber. <i>AICHE Journal</i> , 2020 , 66, e16899	3.6	1
703	Water vapor harvesting by a (P)TSA process with MIL-125(Ti)_NH2 as adsorbent. <i>Separation and Purification Technology</i> , 2020 , 237, 116336	8.3	10
702	Development and validation of analytical method for mono, di and triacetin analysis by HPLC/UVII is/DAD detection with 13C NMR identification. <i>Results in Chemistry</i> , 2020 , 2, 100063	2.1	1
701	Chitosan-based Pickering emulsions and their applications: A review. <i>Carbohydrate Polymers</i> , 2020 , 250, 116885	10.3	52
700	Hexane isomers separation on an isoreticular series of microporous Zr carboxylate metal organic frameworks. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 17780-17789	13	5
699	Big Data-Based Optimization of a Pressure Swing Adsorption Unit for Syngas Purification: On Mapping Uncertainties from a Metaheuristic Technique. <i>Industrial & Discourse Industrial & </i>	3.9	9
698	Chemobrionics: From Self-Assembled Material Architectures to the Origin of Life. <i>Artificial Life</i> , 2020 , 26, 315-326	1.4	18
697	Bovine serum albumin and myoglobin separation by size exclusion SMB. <i>Journal of Chromatography A</i> , 2020 , 1628, 461431	4.5	3
696	Continuous Production of Melamine-Formaldehyde Microcapsules Using a Mesostructured Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 18510-18519	3.9	5
695	Modeling and Simulation of a Steam-Selective Membrane Reactor for Enhanced CO2 Methanation. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 16170-16184	3.9	7
694	Separation of nadolol racemates by high pH reversed-phase preparative chromatography. <i>Separation and Purification Technology</i> , 2020 , 233, 116018	8.3	5
693	Enrichment of low-grade methane gas from nitrogen mixture by VPSA with CO2 displacement process: Modeling and experiment. <i>Chemical Engineering Journal</i> , 2020 , 380, 122509	14.7	17
692	Chemical engineering and environmental challenges. Cyclic adsorption/reaction technologies: Materials and process together!. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103926	6.8	6
691	Visible-light-induced self-cleaning functional fabrics using graphene oxide/carbon nitride materials. <i>Applied Surface Science</i> , 2019 , 497, 143757	6.7	18
690	Separation of guaifenesin enantiomers by simulated moving bed process with four operation modes. <i>Adsorption</i> , 2019 , 25, 1227-1240	2.6	4
689	Solketal Production from Glycerol Ketalization with Acetone: Catalyst Selection and Thermodynamic and Kinetic Reaction Study. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 17746, 17750	3.9	21

688	Evaporation and Permeation of Fragrance Applied to the Skin. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 9644-9650	3.9	7	
687	Optimization of a True Moving Bed unit and determination of its feasible operating region using a novel Sliding Particle Swarm Optimization. <i>Computers and Industrial Engineering</i> , 2019 , 135, 368-381	6.4	12	
686	Chromatographic studies of n-Propyl Propionate, Part II: Synthesis in a fixed bed adsorptive reactor, modelling and uncertainties determination. <i>Computers and Chemical Engineering</i> , 2019 , 128, 164-173	4	5	
685	High purity ethane/ethylene separation by gas phase simulated moving bed using ZIF-8 adsorbent. <i>AICHE Journal</i> , 2019 , 65, e16619	3.6	14	
684	Moving Bed Reactors: Challenges and Progress of Experimental and Theoretical Studies in a Century of Research. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 9179-9198	3.9	18	
683	CO2 Storage on Zeolites and Other Adsorbents. <i>Green Energy and Technology</i> , 2019 , 359-381	0.6	3	
682	Adsorption Equilibrium of Carbon Dioxide, Methane, Nitrogen, Carbon Monoxide, and Hydrogen on UiO-66(Zr)_(COOH)2. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 4724-4732	2.8	6	
681	Removal of Fluoride from Water by a Continuous Electrocoagulation Process. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5314-5321	3.9	15	
6 80	Minimum Cross Diameter for C6II10 Aromatic Compounds. <i>Chemical Engineering and Technology</i> , 2019 , 42, 1169-1173	2	6	
679	Modelling diffusion of fragrances: A radial perspective. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 351-360	2.3	4	
678	Kinetics of Oxidative Degradation of Lignin-Based Phenolic Compounds in Batch Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 16442-16449	3.9	10	
677	Preparation of chitosan/gum Arabic nanoparticles and their use as novel stabilizers in oil/water Pickering emulsions. <i>Carbohydrate Polymers</i> , 2019 , 224, 115190	10.3	35	
676	Adsorption of C6II8 Aromatics over Ba-Exchanged Zeolite X at High Temperature. <i>Chemical Engineering and Technology</i> , 2019 , 42, 2410-2418	2	3	
675	Chitosan-cellulose particles as delivery vehicles for limonene fragrance. <i>Industrial Crops and Products</i> , 2019 , 139, 111407	5.9	19	
674	Butyl acrylate production: A review on process intensification strategies. <i>Chemical Engineering and Processing: Process Intensification</i> , 2019 , 142, 107563	3.7	4	
673	Adsorption of vanillic and syringic acids onto a macroporous polymeric resin and recovery with ethanol:water (90:10 %V/V) solution. <i>Separation and Purification Technology</i> , 2019 , 217, 108-117	8.3	7	
672	CO2 Methanation over Hydrotalcite-Derived Nickel/Ruthenium and Supported Ruthenium Catalysts. <i>Catalysts</i> , 2019 , 9, 1008	4	16	
671	Kinetics of Ethanol Steam Reforming for Hydrogen Production 2019 , 341-354		5	

670	Separation of Hexane Isomers in ZIF-8 by Fixed Bed Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 378-394	3.9	12
669	Balancing the Micro-Mesoporosity for Activity Maximization of N-Doped Carbonaceous Electrocatalysts for the Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2019 , 12, 1017-1025	8.3	36
668	Analyses of Adsorption Behavior of CO2, CH4, and N2 on Different Types of BETA Zeolites. <i>Chemical Engineering and Technology</i> , 2019 , 42, 327-342	2	24
667	Improving the performance of nadolol stereoisomers' preparative separation using Chiralpak IA by SMB chromatography. <i>Chirality</i> , 2019 , 31, 62-71	2.1	4
666	Modeling the electrocoagulation process for the treatment of contaminated water. <i>Chemical Engineering Science</i> , 2019 , 197, 379-385	4.4	26
665	Electrical conductive 3D-printed monolith adsorbent for CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2019 , 278, 403-413	5.3	39
664	Microencapsulation of ergosterol and Agaricus bisporus L. extracts by complex coacervation using whey protein and chitosan: Optimization study using response surface methodology. <i>LWT - Food Science and Technology</i> , 2019 , 103, 228-237	5.4	16
663	Adsorption equilibrium and kinetics of carbon dioxide, methane and nitrogen on binderless zeolite 4A adsorbents. <i>Microporous and Mesoporous Materials</i> , 2019 , 277, 105-114	5.3	28
662	Modelling diffusion and reaction for inert-core catalyst in batch and fixed bed reactors. <i>Canadian Journal of Chemical Engineering</i> , 2019 , 97, 217-225	2.3	4
661	Expanded bed adsorption of albumin and immunoglobulin G from human serum onto a cation exchanger mixed mode adsorbent. <i>Adsorption</i> , 2018 , 24, 293-307	2.6	6
660	Microstructure effect of carbon materials on the low-concentration methane adsorption separation from its mixture with nitrogen. <i>Adsorption</i> , 2018 , 24, 357-369	2.6	19
659	Xylene Isomerization over Beta Zeolites in Liquid Phase. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 5568-5579	3.9	9
658	Air Diffusion of Aroma-Active Components from Crude Citrus Essential Oils and Their Extract Phases Obtained by Solvent Extraction. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 5670	- 3 :879	12
657	New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture. <i>Adsorption</i> , 2018 , 24, 249-265	2.6	29
656	Resorcinolformaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas. <i>Adsorption</i> , 2018 , 24, 169-177	2.6	9
655	Fractionation of acids, ketones and aldehydes from alkaline lignin oxidation solution with SP700 resin. <i>Separation and Purification Technology</i> , 2018 , 194, 256-264	8.3	17
654	Towards polymer grade ethylene production with Cu-BTC: gas-phase SMB versus PSA. <i>Adsorption</i> , 2018 , 24, 203-219	2.6	10
653	Equilibrium study of single and binary adsorption of lead and mercury on bentonite-alginate composite: Experiments and application of two theoretical approaches. <i>Journal of Molecular Liquids</i>	6	37

652	Electrocoagulation process for the removal of co-existent fluoride, arsenic and iron from contaminated drinking water. <i>Separation and Purification Technology</i> , 2018 , 197, 237-243	8.3	34	
651	Dynamics of a Fixed Bed Adsorption Column in the Kinetic Separation of Hexane Isomers in MOF ZIF-8. <i>Springer Proceedings in Mathematics and Statistics</i> , 2018 , 257-271	0.2		
650	Chemical profile and bioactive properties of the essential oil isolated from Ammodaucus leucotrichus fruits growing in Sahara and its evaluation as a cosmeceutical ingredient. <i>Industrial Crops and Products</i> , 2018 , 119, 249-254	5.9	14	
649	Sorption-enhanced methanol steam reforming for hydrogen production by combined copper-based catalysts with hydrotalcites. <i>Chemical Engineering and Processing: Process Intensification</i> , 2018 , 127, 72-50.	8 3 ·7	16	
648	A quasi-virtual online analyser based on an artificial neural networks and offline measurements to predict purities of raffinate/extract in simulated moving bed processes. <i>Applied Soft Computing Journal</i> , 2018 , 67, 29-47	7.5	15	
647	The trail of perfumes. AICHE Journal, 2018 , 64, 2890-2897	3.6	4	
646	Supercritical CO assisted process for the production of high-purity and sterile nano-hydroxyapatite/chitosan hybrid scaffolds. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2018 , 106, 965-975	3.5	12	
645	Inorganic Membranes for Hydrogen Separation. Separation and Purification Reviews, 2018, 47, 229-266	7.3	34	
644	Lignin fractionation from E. Globulus kraft liquor by ultrafiltration in a three stage membrane sequence. <i>Separation and Purification Technology</i> , 2018 , 192, 140-151	8.3	38	
643	Effect of citrus sinensis essential oil deterpenation on the aroma profile of the phases obtained by solvent extraction. <i>Journal of Chemical Thermodynamics</i> , 2018 , 116, 166-175	2.9	18	
642	Separation of tartronic and glyceric acids by simulated moving bed chromatography. <i>Journal of Chromatography A</i> , 2018 , 1563, 62-70	4.5	11	
641	Cosmetics Preservation: A Review on Present Strategies. <i>Molecules</i> , 2018 , 23,	4.8	101	
640	CO2 Capture in Chemically and Thermally Modified Activated Carbons Using Breakthrough Measurements: Experimental and Modeling Study. <i>Industrial & Discourse Industrial Chemistry Research</i> , 2018 , 57, 11154-11166	3.9	21	
639	Investigation of a novel combination of adsorbents for hydrogen purification using Cu-BTC and conventional adsorbents in pressure swing adsorption. <i>Adsorption</i> , 2018 , 24, 481-498	2.6	5	
638	Xylene isomerization side reactions over Beta zeolite: Disproportionation and transalkylation of C8 aromatics and toluene. <i>Applied Catalysis A: General</i> , 2018 , 562, 198-205	5.1	16	
637	CHAPTER 7:Green Fuels and Fuel Additives Production in Simulated Moving Bed Reactors. <i>RSC Green Chemistry</i> , 2018 , 145-165	0.9	2	
636	Synthesis, dynamic characterization, and modeling studies of an AM-3 membrane for light gases separation. <i>Microporous and Mesoporous Materials</i> , 2018 , 261, 170-180	5.3	1	
635	Adsorption equilibrium of xylene isomers and ethylbenzene on MIL-125(Ti)_NH2: the temperature influence on the para-selectivity. <i>Adsorption</i> , 2018 , 24, 715-724	2.6	7	

634	Chromatographic studies of n-Propyl Propionate: Adsorption equilibrium, modelling and uncertainties determination. <i>Computers and Chemical Engineering</i> , 2018 , 119, 371-382	4	8
633	Modeling and Simulation of a TPSA System for a Vinyl Chloride/Nitrogen Separation from Industrial Streams. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 14223-14232	3.9	2
632	Co-adsorption of Albumin and Immunoglobulin G from Human Serum onto a cation exchanger mixed mode adsorbent. <i>Adsorption</i> , 2018 , 24, 745-755	2.6	1
631	From Carbon Molecular Sieves to VOCs filters: Carbon gels with tailored porosity for hexane isomers adsorption and separation. <i>Microporous and Mesoporous Materials</i> , 2018 , 270, 161-167	5.3	9
630	Flavor Engineering Methodology To Predict Sensory Qualities of Flavored Products. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 8115-8123	3.9	6
629	Functionalized textiles with PUU/limonene microcapsules: effect of finishing methods on fragrance release. <i>Journal of the Textile Institute</i> , 2017 , 108, 361-367	1.5	14
628	Fractionation of acid lime essential oil using ethanol/water mixtures: Effect of the process on the aroma profile. <i>Journal of Chemical Thermodynamics</i> , 2017 , 108, 118-126	2.9	9
627	Adsorption of Human Serum Albumin (HSA) on a mixed-mode adsorbent: equilibrium and kinetics. <i>Adsorption</i> , 2017 , 23, 491-505	2.6	13
626	Computer simulation of adsorption and sitting of CO2, N2, CH4 and water on a new Al(OH)-fumarate MOF. <i>Adsorption</i> , 2017 , 23, 423-431	2.6	7
625	Biogas upgrading by selective adsorption onto CO 2 activated carbon from wood pellets. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 1386-1393	6.8	29
624	Selection of a stationary phase for the chromatographic separation of organic acids obtained from bioglycerol oxidation. <i>Adsorption</i> , 2017 , 23, 627-638	2.6	4
623	Application of membrane technology for the enhancement of 1,1-diethoxybutane synthesis. <i>Chemical Engineering and Processing: Process Intensification</i> , 2017 , 117, 45-57	3.7	6
622	Aroma-Loaded Microcapsules with Antibacterial Activity for Eco-Friendly Textile Application: Synthesis, Characterization, Release, and Green Grafting. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 5516-5526	3.9	61
621	Dynamics of a True Moving Bed separation process: Linear model identification and advanced process control. <i>Journal of Chromatography A</i> , 2017 , 1504, 112-123	4.5	10
620	Separation of CO 2 /N 2 on binderless 5A zeolite. <i>Journal of CO2 Utilization</i> , 2017 , 20, 224-233	7.6	45
619	Dynamic response to process disturbances comparison between TMB/SMB models in transient regime. Computers and Chemical Engineering, 2017, 99, 230-244	4	5
618	Single and binary surface diffusion permeation through zeolite membranes using new Maxwell-Stefan factors for Dubinin-type isotherms and occupancy-dependent kinetics. <i>Separation and Purification Technology</i> , 2017 , 182, 207-218	8.3	8
617	Adsorption equilibrium and kinetics of Immunoglobulin G on a mixed-mode adsorbent in batch and packed bed configuration. <i>Journal of Chromatography A</i> , 2017 , 1524, 143-152	4.5	7

616	Sorption-Enhanced Reaction With Simulated Moving Bed Reactor and PermSMBR Technologies. <i>Advances in Chemical Engineering</i> , 2017 , 51, 261-330	0.6	3
615	Preparation and characterization of poly(urethanellrea) microcapsules containing limonene. Kinetic analysis. <i>International Journal of Polymer Analysis and Characterization</i> , 2017 , 22, 709-724	1.7	3
614	Predicting Vapor-Phase Concentrations for the Assessment of the Odor Perception of Fragrance Chemicals Diluted in Mineral Oil. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 8767-8777	3.9	7
613	Synthesis gas adjustment by low temperature sorption enhanced water-gas shift reaction through a copper-zeolite 13X hybrid material. <i>Chemical Engineering and Processing: Process Intensification</i> , 2017 , 121, 97-110	3.7	4
612	Performance Evaluation of Pervaporation Technology for Process Intensification of Butyl Acrylate Synthesis. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 13064-13074	3.9	13
611	Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. <i>Industrial Crops and Products</i> , 2017 , 95, 404-4	15 ⁹	72
610	Cryogenic pressure temperature swing adsorption process for natural gas upgrade. <i>Separation and Purification Technology</i> , 2017 , 173, 339-356	8.3	39
609	Performance of reverse osmosis and nanofiltration membranes in the fractionation and retention of patchouli essential oil. <i>Journal of Supercritical Fluids</i> , 2016 , 107, 639-648	4.2	11
608	What wrong with Lagergreen pseudo first order model for adsorption kinetics?. <i>Chemical Engineering Journal</i> , 2016 , 306, 1138-1142	14.7	81
607	Assessment of key features of lignin from lignocellulosic crops: Stalks and roots of corn, cotton, sugarcane, and tobacco. <i>Industrial Crops and Products</i> , 2016 , 92, 136-148	5.9	21
606	Enhanced Simulated Moving Bed Reactor Process for Butyl Acrylate Synthesis: Process Analysis and Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 10735-10743	3.9	15
605	Fixed-bed gasBolid catalytic reactors 2016 , 53-79		
604	Monolith reactors 2016 , 171-212		1
603	Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. <i>Food and Bioproducts Processing</i> , 2016 , 100, 25-35	4.9	41
602	Microencapsulation of red and white thyme oil in poly(lactic-co-glycolic) acid: Assessment of encapsulation efficiency and antimicrobial capacity of the produced microcapsules. <i>Canadian Journal of Chemical Engineering</i> , 2016 , 94, 469-475	2.3	14
601	Enrichment of ventilation air methane by adsorption with displacement chromatography technology: Experiment and numerical simulation. <i>Chemical Engineering Science</i> , 2016 , 149, 215-228	4.4	20
600	Development of gas-phase SMB technology for light olefin/paraffin separations. <i>AICHE Journal</i> , 2016 , 62, 2490-2500	3.6	21
599	Xylene Isomerization in the Liquid Phase Using Large-Pore Zeolites. <i>Chemical Engineering and Technology</i> , 2016 , 39, 225-232	2	10

598	Teaching chemical product design. Education for Chemical Engineers, 2016, 14, 43-48	2.4	10
597	Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. <i>Food Chemistry</i> , 2016 , 197 Pt B, 1054-63	8.5	103
596	Successful recovery and concentration of vanillin and syringaldehyde onto a polymeric adsorbent with ethanol/water solution. <i>Chemical Engineering Journal</i> , 2016 , 294, 73-82	14.7	11
595	Effect of dead volumes on the performance of an industrial-scale simulated moving-bed Parex unit for p-xylene purification. <i>AICHE Journal</i> , 2016 , 62, 241-255	3.6	9
594	Dynamics of a True Moving Bed separation process: Effect of operating variables on performance indicators using orthogonalization method. <i>Computers and Chemical Engineering</i> , 2016 , 86, 5-17	4	10
593	Simulated moving bed reactor for p-xylene production: Dual-bed column. <i>Chemical Engineering and Processing: Process Intensification</i> , 2016 , 104, 75-83	3.7	18
592	Progress on sorption-enhanced reaction process for hydrogen production. <i>Reviews in Chemical Engineering</i> , 2016 ,	5	7
591	Ceratonia siliqua L. hydroethanolic extract obtained by ultrasonication: antioxidant activity, phenolic compounds profile and effects in yogurts functionalized with their free and microencapsulated forms. <i>Food and Function</i> , 2016 , 7, 1319-28	6.1	19
590	Stability of an Al-Fumarate MOF and Its Potential for CO2 Capture from Wet Stream. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 2134-2143	3.9	41
589	Copper based materials for water-gas shift equilibrium displacement. <i>Applied Catalysis B: Environmental</i> , 2016 , 189, 199-209	21.8	17
588	Adsorption of vanillin and syringaldehyde onto a macroporous polymeric resin. <i>Chemical Engineering Journal</i> , 2016 , 288, 869-879	14.7	22
587	Performance of Side-Streams from Eucalyptus Processing as Sources of Polysaccharides and Lignins by Kraft Delignification. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 516-526	3.9	6
586	Carbon dioxide removal for methane upgrade by a VSA process using an improved 13X zeolite. <i>Fuel Processing Technology</i> , 2016 , 143, 185-194	7.2	31
585	Recovery of Vanillin and Syringaldehyde from Lignin Oxidation: A Review of Separation and Purification Processes. <i>Separation and Purification Reviews</i> , 2016 , 45, 227-259	7-3	78
584	Effect of cosmetic matrices on the release and odour profiles of the supercritical CO2 extract of Origanum majorana L. <i>International Journal of Cosmetic Science</i> , 2016 , 38, 364-74	2.7	9
583	Synthesis of the Biofuel Additive 1,1-Diethoxybutane in a Fixed-Bed Column with Amberlyst-15 Wet. <i>Chemical Engineering and Technology</i> , 2016 , 39, 1509-1518	2	10
582	Separation of Nadolol Stereoisomers Using Chiralpak IA Chiral Stationary Phase. <i>Chirality</i> , 2016 , 28, 399	9- <u>40</u> 8	7
581	Experimental measurement and modeling of ion exchange equilibrium and kinetics of cadmium(II) solutions over microporous stannosilicate AV-6. <i>Chemical Engineering Journal</i> , 2016 , 295, 139-151	14.7	4

(2015-2016)

580	Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography. <i>Journal of Chromatography A</i> , 2016 , 1467, 347-355	4.5	12	
579	Methanol production by bi-reforming. <i>Canadian Journal of Chemical Engineering</i> , 2015 , 93, 510-526	2.3	30	
578	Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF. <i>Separation and Purification Technology</i> , 2015 , 149, 445-456	8.3	57	
577	Adsorption of Pure and Binary CO2, CH4, and N2Gas Components on Activated Carbon Beads. Journal of Chemical & Data, 2015, 60, 2684-2693	2.8	68	
576	Radar Tool for Lignin Classification on the Perspective of Its Valorization. <i>Industrial & amp;</i> Engineering Chemistry Research, 2015 , 54, 7580-7590	3.9	11	
575	Syngas Purification by Porous Amino-Functionalized Titanium Terephthalate MIL-125. <i>Energy & Energy & </i>	4.1	33	
574	Synthesis, Pelleting, and Performance Evaluation of a Novel K-Promoted EAlumina/MgAl-Layered Double Oxide Composite Adsorbent for Warm Gas H2/CO2 Separation. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 7154-7163	3.9	11	
573	Adsorption Equilibrium and Dynamics of Fixed Bed Adsorption of CH4/N2 in Binderless Beads of 5A Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 6390-6399	3.9	26	
572	Cooperativity between various types of polar solute-solvent interactions in aqueous media. <i>Journal of Chromatography A</i> , 2015 , 1408, 108-17	4.5	16	
571	Ultrafiltration of ethanol/water extract of Eucalyptus globulus bark: Resistance and cake build up analysis. <i>Separation and Purification Technology</i> , 2015 , 144, 256-266	8.3	7	
570	Kraft delignification of energy crops in view of pulp production and lignin valorization. <i>Industrial Crops and Products</i> , 2015 , 71, 153-162	5.9	33	
569	Combination of Reaction and Separation in Heterogeneous Catalytic Hydrogenation of Ethylformate. <i>Chemical Engineering and Technology</i> , 2015 , 38, 804-812	2	3	
568	Extraction of aromatic volatiles by hydrodistillation and supercritical fluid extraction with CO 2 from Helichrysum italicum subsp. picardii growing in Portugal. <i>Industrial Crops and Products</i> , 2015 , 77, 680-683	5.9	15	
567	Modelling the Fixed Bed Adsorption Dynamics of CO2/CH4 in 13X Zeolite for Biogas Upgrading and CO2 Sequestration. <i>CIM Series in Mathematical Sciences</i> , 2015 , 365-375	0.8		
566	12. Utilization of existing assets 2015 , 283-300			
565	Simulated moving bed reactor for butyl acrylate synthesis: From pilot to industrial scale. <i>Chemical Engineering and Processing: Process Intensification</i> , 2015 , 97, 153-168	3.7	21	
564	Vapor l liquid Equilibrium of Binary Mixtures Containing Isopropyl Acetate and Alkanols at 101.32 kPa. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 3181-3186	2.8	10	
563	Gas-phase simulated moving bed: Propane/propylene separation on 13X zeolite. <i>Journal of Chromatography A</i> , 2015 , 1423, 136-48	4.5	31	

562	Lithium ion recovery from brine using granulated polyacrylamide MnO 2 ion-sieve. <i>Chemical Engineering Journal</i> , 2015 , 279, 659-666	14.7	82
561	Instrumental aspects of Simulated Moving Bed chromatography. <i>Journal of Chromatography A</i> , 2015 , 1421, 82-102	4.5	38
560	Modeling Fragrance Components Release from a Simplified Matrix Used in Toiletries and Household Products. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 11720-11731	3.9	14
559	Synthesis of butyl acrylate in a fixed-bed adsorptive reactor over Amberlyst 15. <i>AICHE Journal</i> , 2015 , 61, 1263-1274	3.6	29
558	Design of a true moving bed reactor for the direct synthesis of dimethyl carbonate. <i>Chemical Engineering Science</i> , 2015 , 123, 406-419	4.4	14
557	Thermodynamic and kinetic studies for synthesis of the acetal (1,1-diethoxybutane) catalyzed by Amberlyst 47 ion-exchange resin. <i>Chemical Engineering Journal</i> , 2015 , 264, 258-267	14.7	11
556	Methane purification by adsorptive processes on MIL-53(Al). <i>Chemical Engineering Science</i> , 2015 , 124, 79-95	4.4	47
555	Separation of Ternary Mixtures by Pseudo-Simulated Moving-Bed Chromatography: Separation Region Analysis. <i>Chemical Engineering and Technology</i> , 2015 , 38, 2316-2326	2	5
554	Limitations of the Zero-Length Column Technique to Measure Diffusional Time Constants in Microporous Adsorbents. <i>Chemical Engineering and Technology</i> , 2015 , 38, 2335-2339	2	6
553	Thermodynamic and kinetic study of the production of oxygenated compounds: Synthesis of 1,1-diethoxybutane catalyzed by amberlyst-15. <i>Canadian Journal of Chemical Engineering</i> , 2015 , 93, 199	90 2 13998	3 5
552	Simulated moving bed reactor for p-xylene production: Optimal particle size. <i>Canadian Journal of Chemical Engineering</i> , 2015 , 93, 2205-2213	2.3	7
551	How to Overcome the Water as-Shift Equilibrium using a Conventional Nickel Reformer Catalyst. <i>Energy Technology</i> , 2015 , 3, 1205-1216	3.5	8
550	Revamping an Existing Aromatics Complex with Simulated Moving-Bed Reactor for 'p-Xylene Production. <i>Chemical Engineering and Technology</i> , 2015 , 38, 2340-2344	2	1
549	Alkenes oligomerization with resin catalysts. Fuel Processing Technology, 2015, 138, 86-99	7.2	40
548	Kinetic Modeling of Pure and Multicomponent Gas Permeation Through Microporous Membranes: Diffusion Mechanisms and Influence of Isotherm Type. <i>Separation and Purification Reviews</i> , 2015 , 44, 283-307	7.3	20
547	Modeling and simulation of an industrial-scale parex process. AICHE Journal, 2015, 61, 1345-1363	3.6	22
546	Modeling Adsorptive Separations Using Metal Drganic Frameworks 2015, 419-449		
545	Lignin-based rigid polyurethane foams with improved biodegradation. <i>Journal of Cellular Plastics</i> , 2014 , 50, 81-95	1.5	59

(2014-2014)

544	Chromatographic separation of prebiotic oligosaccharides. Case study: separation of galacto-oligosaccharides on a cation exchanger. <i>Adsorption</i> , 2014 , 20, 483-492	2.6	16
543	Microencapsulation of essential oils with biodegradable polymeric carriers for cosmetic applications. <i>Chemical Engineering Journal</i> , 2014 , 245, 191-200	14.7	181
542	Single and multicomponent adsorption of hexane isomers in the microporous ZIF-8. <i>Microporous and Mesoporous Materials</i> , 2014 , 194, 146-156	5.3	33
541	Adsorption of xylene isomers in MOF UiO-66 by molecular simulation. <i>Microporous and Mesoporous Materials</i> , 2014 , 190, 165-170	5.3	36
540	Membrane performance and application of ultrafiltration and nanofiltration to ethanol/water extract of Eucalyptus bark. <i>Separation and Purification Technology</i> , 2014 , 132, 234-243	8.3	25
539	Perfumery Radar 2.0: A Step toward Fragrance Design and Classification. <i>Industrial &</i> Engineering Chemistry Research, 2014 , 53, 8890-8912	3.9	13
538	Adsorption equilibrium and kinetic study of guaifenesin enantiomers on cellulose tris 3,5-dimethylphenylcarbamate packed column. <i>Chemical Engineering Journal</i> , 2014 , 244, 128-136	14.7	13
537	A Complete Separation of Hexane Isomers by a Functionalized Flexible Metal Organic Framework. <i>Advanced Functional Materials</i> , 2014 , 24, 7666-7673	15.6	59
536	Adsorption Equilibrium and Kinetics of Methane and Nitrogen on Carbon Molecular Sieve. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 16840-16850	3.9	38
535	Electric Swing Adsorption for Gas Separation and Purification: A Review. <i>Separation Science and Technology</i> , 2014 , 49, 1985-2002	2.5	46
534	Sorption enhanced reactive process for the synthesis of glycerol ethyl acetal. <i>Chemical Engineering Journal</i> , 2014 , 258, 229-239	14.7	22
533	Adsorption Equilibrium and Fixed Bed Adsorption of Aniline onto Polymeric Resin and Activated Carbons. <i>Separation Science and Technology</i> , 2014 , 49, 335-344	2.5	7
532	Adsorption of H2O and Dimethyl Carbonate at High Pressure over Zeolite 3A in Fixed Bed Column. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 2473-2483	3.9	20
531	Sorption-Enhanced Steam Reforming of Ethanol on a Novel KNiŒu⊞ydrotalcite Hybrid Material. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 3842-3853	3.9	37
530	Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units. <i>Journal of Chromatography A</i> , 2014 , 1363, 242-9	4.5	16
529	Reaction Kinetics and Thermodynamic Equilibrium for Butyl Acrylate Synthesis from n-Butanol and Acrylic Acid. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 6647-6654	3.9	20
528	Evaluation of chemical processing impact on E. globulus wood lignin and comparison with bark lignin. <i>Industrial Crops and Products</i> , 2014 , 61, 479-491	5.9	34
527	Propylene/Nitrogen Separation in a By-Stream of the Polypropylene Production: From Pilot Test and Model Validation to Industrial Scale Process Design and Optimization. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 9199-9213	3.9	9

526	Gas phase SMB for propane/propylene separation using enhanced 13X zeolite beads. <i>Adsorption</i> , 2014 , 20, 61-75	2.6	19
525	Sorption-enhanced steam reforming of ethanol for continuous high-purity hydrogen production: 2D adsorptive reactor dynamics and process design. <i>Chemical Engineering Science</i> , 2014 , 118, 83-93	4.4	33
524	Light olefins/paraffins separation with 13X zeolite binderless beads. <i>Separation and Purification Technology</i> , 2014 , 133, 452-475	8.3	68
523	Simulated moving bed reactor for p-xylene production: Adsorbent and catalyst homogeneous mixture. <i>Chemical Engineering Journal</i> , 2014 , 258, 194-202	14.7	19
522	Isobaric Vaporlliquid Equilibrium for Binary Systems of 2,2,4-Trimethylpentane with o-Xylene, m-Xylene, p-Xylene, and Ethylbenzene at 250 kPa. <i>Journal of Chemical & Data</i> , 2014, 59, 1499-1506	2.8	8
521	High-Purity Hydrogen Production by Sorption-Enhanced Steam Reforming of Ethanol: A Cyclic Operation Simulation Study. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 8515-8527	3.9	21
520	Simplified kinetic model for steam reforming of ethanol on a Ni/Al2O3 catalyst. <i>Canadian Journal of Chemical Engineering</i> , 2014 , 92, 116-130	2.3	39
519	Performance evaluation of silica membrane for waterE-butanol binary mixture. <i>Separation and Purification Technology</i> , 2014 , 127, 18-28	8.3	19
518	Coupled Extraction and Dynamic Headspace Techniques for the Characterization of Essential Oil and Aroma Fingerprint of Thymus Species. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 9875-9882	3.9	4
517	Accurate Model for Predicting Adsorption of Olefins and Paraffins on MOFs with Open Metal Sites. <i>Industrial & Discourse Metal Sites</i> Industrial & I	3.9	48
516	Separation of human immunoglobulin G subclasses on a protein A monolith column. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2014 , 962, 89-93	3.2	11
515	Proteins Separation and Purification by Expanded Bed Adsorption and Simulated Moving Bed Technology 2014 , 1-34		1
514	Evaluation of carbon dioxidelitrogen separation through fixed bed measurements and simulations. <i>Adsorption</i> , 2014 , 20, 945-957	2.6	12
513	Separation of Hexane Isomers on Rigid Porous Metal Carboxylate-Based Metal©rganic Frameworks. <i>Adsorption Science and Technology</i> , 2014 , 32, 475-488	3.6	13
512	From molecules to processes: Molecular simulations applied to the design of simulated moving bed for ethane/ethylene separation. <i>Canadian Journal of Chemical Engineering</i> , 2014 , 92, 148-155	2.3	10
511	Adsorption Equilibrium and Kinetics of the Parex' Feed and Desorbent Streams from Batch Experiments. <i>Chemical Engineering and Technology</i> , 2014 , 37, 1541-1551	2	12
510	Hybrid Process for o- and p-Xylene Production in Aromatics Plants. <i>Chemical Engineering and Technology</i> , 2014 , 37, 1483-1492	2	15
509	Synthesis of a Renewable Oxygenated Diesel Additive in an Adsorptive Reactor. <i>Energy Technology</i> , 2014 , 2, 839-850	3.5	5

508	Review for the Direct Synthesis of Dimethyl Carbonate. <i>ChemBioEng Reviews</i> , 2014 , 1, 214-229	5.2	93
507	Coupled PermSMBR iProcess design and development for 1,1-dibutoxyethane production. <i>Chemical Engineering Research and Design</i> , 2014 , 92, 2017-2026	5.5	10
506	Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite. <i>Microporous and Mesoporous Materials</i> , 2014 , 187, 100-107	5.3	58
505	Amino acid/water interactions study: a new amino acid scale. <i>Journal of Biomolecular Structure and Dynamics</i> , 2014 , 32, 959-68	3.6	34
504	Ethyl Lactate Main Properties, Production Processes, and Applications. <i>Green Chemistry and Sustainable Technology</i> , 2014 , 107-125	1.1	5
503	Sorption-enhanced steam reforming of ethanol on NiMgAl multifunctional materials: Experimental and numerical investigation. <i>Chemical Engineering Journal</i> , 2013 , 231, 36-48	14.7	54
502	A Product Engineering Approach in the Perfume Industry 2013 , 1-13		O
501	Performance of Perfumes 2013 , 61-94		
500	Design of Perfumes 2013 , 15-60		1
499	Classification of PerfumesPerfumery Radar 2013 , 95-147		
499 498	Classification of PerfumesPerfumery Radar 2013, 95-147 CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. Chemical Engineering and Technology, 2013, 36, 1231-1239	2	31
	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework	5.3	31
498	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1231-1239 Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the		
498	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1231-1239 Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 26-35 H2 purification by pressure swing adsorption using CuBTC. <i>Separation and Purification Technology</i> ,	5.3	24
498 497 496	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1231-1239 Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 26-35 H2 purification by pressure swing adsorption using CuBTC. <i>Separation and Purification Technology</i> , 2013 , 118, 744-756 Industrial Xylene/Ethylbenzene Isomerization Unit Using a Radial-Flow Reactor and EUO-Type	5·3 8·3	24 57
498 497 496 495	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1231-1239 Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 26-35 H2 purification by pressure swing adsorption using CuBTC. <i>Separation and Purification Technology</i> , 2013 , 118, 744-756 Industrial Xylene/Ethylbenzene Isomerization Unit Using a Radial-Flow Reactor and EUO-Type Zeolite. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1658-1664 Diffusion and performance of fragranced products: Prediction and validation. <i>AICHE Journal</i> , 2013 ,	5·3 8·3 2	24579
498 497 496 495 494	CO2/CH4 Separation by Adsorption using Nanoporous Metal organic Framework Copper-Benzene-1,3,5-tricarboxylate Tablet. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1231-1239 Adsorption of hexane isomers on MFI type zeolites at ambient temperature: Understanding the aluminium content effect. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 26-35 H2 purification by pressure swing adsorption using CuBTC. <i>Separation and Purification Technology</i> , 2013 , 118, 744-756 Industrial Xylene/Ethylbenzene Isomerization Unit Using a Radial-Flow Reactor and EUO-Type Zeolite. <i>Chemical Engineering and Technology</i> , 2013 , 36, 1658-1664 Diffusion and performance of fragranced products: Prediction and validation. <i>AICHE Journal</i> , 2013 , 59, 3943-3957 Process intensification: New technologies (SMBR and PermSMBR) for the synthesis of acetals.	5·3 8·3 2 3.6	2457914

490	Pressure swing adsorption process for the separation of nitrogen and propylene with a MOF adsorbent MIL-100(Fe). <i>Separation and Purification Technology</i> , 2013 , 110, 101-111	8.3	30
489	Sieving di-branched from mono-branched and linear alkanes using ZIF-8: experimental proof and theoretical explanation. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8795-804	3.6	64
488	Zeolite Apgiia for Adsorption Based Carbon Dioxide Capture. <i>Separation Science and Technology</i> , 2013 , 48, 388-402	2.5	3
487	Sorption enhanced steam reforming of ethanol on hydrotalcite-like compounds impregnated with active copper. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 581-592	5.5	46
486	Analysis of amino acid-water interactions by partitioning in aqueous two-phase systems. Iamino acids with non-polar side-chains. <i>Journal of Chromatography A</i> , 2013 , 1274, 82-6	4.5	25
485	Study of organic compounds-water interactions by partition in aqueous two-phase systems. <i>Journal of Chromatography A</i> , 2013 , 1322, 97-104	4.5	16
484	Internal mass transfer enhancement in flow-through catalytic membranes. <i>Chemical Engineering Science</i> , 2013 , 104, 1090-1106	4.4	3
483	Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant. <i>Chemical Engineering Science</i> , 2013 , 101, 615-619	4.4	58
482	Activated carbon honeycomb monolith L'eolite 13X hybrid system to capture CO2 from flue gases employing Electric Swing Adsorption. <i>Chemical Engineering Science</i> , 2013 , 104, 304-318	4.4	45
481	Interplay between channel and catalyst operating regimes in wall-coated microreactors. <i>Chemical Engineering Journal</i> , 2013 , 227, 42-55	14.7	7
480	Glycerol Valorization as Biofuel: Thermodynamic and Kinetic Study of the Acetalization of Glycerol with Acetaldehyde. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 1538-1547	3.9	40
479	Hexane isomers sorption on a functionalized metalorganic framework. <i>Microporous and Mesoporous Materials</i> , 2013 , 170, 251-258	5.3	23
478	Simulation of Methane Steam Reforming Enhanced by in Situ CO2 Sorption Using K2CO3-Promoted Hydrotalcites for H2 Production. <i>Energy & Energy & Ene</i>	4.1	20
477	Kinetic study for the direct synthesis of dimethyl carbonate from methanol and CO2 over CeO2 at high pressure conditions. <i>Applied Catalysis A: General</i> , 2013 , 455, 219-226	5.1	61
476	Oxidation of Lignin from Eucalyptus globulus Pulping Liquors to Produce Syringaldehyde and Vanillin. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2013 , 52, 4421-4428	3.9	72
475	Solvatochromic relationship: prediction of distribution of ionic solutes in aqueous two-phase systems. <i>Journal of Chromatography A</i> , 2013 , 1271, 10-6	4.5	32
474	Prediction Model for the Odor Intensity of Fragrance Mixtures: A Valuable Tool for Perfumed Product Design. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 963-971	3.9	14
473	Thermophysical Properties of the Pure Ionic Liquid 1-Butyl-1-methylpyrrolidinium Dicyanamide and Its Binary Mixtures with Alcohols. <i>Journal of Chemical & Data</i> , 2013, 58, 1440-1448	2.8	53

(2012-2013)

472	Isobaric Vaporlliquid Equilibrium Data for Binary System of Glycerol Ethyl Acetal and Acetonitrile at 60.0 kPa and 97.8 kPa. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 1717-1723	2.8	6
471	Thermodynamic Equilibrium of Xylene Isomerization in the Liquid Phase. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 1425-1428	2.8	13
470	CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units. <i>Industrial & Discourted Chemistry Research</i> , 2013 , 52, 7947-7955	3.9	87
469	New 13X zeolite for propylene/propane separation by vacuum swing adsorption. <i>Separation and Purification Technology</i> , 2013 , 103, 60-70	8.3	53
468	Regime mapping and the role of the intermediate region in wall-coated microreactors. <i>Chemical Engineering Science</i> , 2013 , 94, 166-184	4.4	7
467	Dynamic Study of the Pressure Swing Adsorption Process for Biogas Upgrading and Its Responses to Feed Disturbances. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 5445-5454	3.9	37
466	Adsorption equilibrium of water vapor onto activated carbon, activated alumina, carbon and alumina impregnated with hygroscopic salt. <i>Turkish Journal of Chemistry</i> , 2013 ,	1	2
465	K-Promoted Hydrotalcites for CO2 Capture in Sorption Enhanced Reactions. <i>Chemical Engineering and Technology</i> , 2013 , 36, 567-574	2	58
464	Revisiting the concepts of competition between reaction and diffusion in poisoned catalysts. <i>Canadian Journal of Chemical Engineering</i> , 2013 , 91, 203-211	2.3	1
463	Separation of nadolol stereoisomers by chiral liquid chromatography at analytical and preparative scales. <i>Chirality</i> , 2013 , 25, 197-205	2.1	7
462	Hydrogen Production from Sorption Enhanced Biogas Steam Reforming Using Nickel-Based Catalysts. <i>Engineering Journal</i> , 2013 , 17, 19-34	1.8	6
461	Propylene/propane separation by vacuum swing adsorption using Cu-BTC spheres. <i>Separation and Purification Technology</i> , 2012 , 90, 109-119	8.3	73
460	Fixed-bed adsorption of aromatic C8 isomers: Breakthrough experiments, modeling and simulation. <i>Separation and Purification Technology</i> , 2012 , 90, 246-256	8.3	20
459	Propane/propylene separation by adsorption using shaped copper trimesate MOF. <i>Microporous and Mesoporous Materials</i> , 2012 , 157, 101-111	5.3	71
458	Separation of C3/C4 hydrocarbon mixtures by adsorption using a mesoporous iron MOF: MIL-100(Fe). <i>Microporous and Mesoporous Materials</i> , 2012 , 153, 178-190	5.3	51
457	Modeling adsorption equilibria of xylene isomers in a microporous metal B rganic framework. <i>Microporous and Mesoporous Materials</i> , 2012 , 155, 220-226	5.3	21
456	Effect of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti)_NH2. <i>Microporous and Mesoporous Materials</i> , 2012 , 158, 229-234	5.3	38
455	Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. <i>Microporous and Mesoporous Materials</i> , 2012 , 158, 219-228	5.3	86

454	Simulated Moving Bed Chromatography: From Concept to Proof-of-Concept. <i>Chemical Engineering and Technology</i> , 2012 , 35, 17-34	2	59
453	Experimental and Theoretical Study of Chemical Equilibria in the Reactive Systems of Acetals Synthesis. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 12723-12729	3.9	6
452	Lignin as Source of Fine Chemicals: Vanillin and Syringaldehyde 2012 , 381-420		36
45 ¹	Thermal Effects on the Synthesis of 1,1-Dibutoxyethane in a Fixed-Bed Adsorptive Reactor. <i>Chemical Engineering and Technology</i> , 2012 , 35, 1989-1997	2	6
450	Electrothermal performance of an activated carbon honeycomb monolith. <i>Chemical Engineering Research and Design</i> , 2012 , 90, 2013-2022	5.5	20
449	Modeling of physical and chemical equilibrium for the direct synthesis of dimethyl carbonate at high pressure conditions. <i>Fluid Phase Equilibria</i> , 2012 , 336, 41-51	2.5	16
448	Thermal effects on the synthesis of acetals in a simulated moving bed adsorptive reactor. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 504-513	14.7	12
447	Release Studies of Thymol and p-Cymene from Polylactide Microcapsules. <i>Industrial & amp;</i> Engineering Chemistry Research, 2012 , 51, 11565-11571	3.9	18
446	Pressure Swing Adsorption Process in Coal to Fischer Tropsch Fuels with CO2 Capture. <i>Energy & Energy Fuels</i> , 2012 , 26, 1246-1253	4.1	12
445	Syngas Stoichiometric Adjustment for Methanol Production and Co-Capture of Carbon Dioxide by Pressure Swing Adsorption. <i>Separation Science and Technology</i> , 2012 , 47, 850-866	2.5	16
444	Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 5011-5021	3.9	85
443	Green Fuel Production Using the PermSMBR Technology. <i>Industrial & amp; Engineering Chemistry Research</i> , 2012 , 51, 8928-8938	3.9	17
442	Steam Reforming of Ethanol on Copper Catalysts Derived from Hydrotalcite-like Materials. <i>Industrial & Derived & Materials & Materials & Material & Materi</i>	3.9	42
441	Toward understanding the influence of ethylbenzene in p-xylene selectivity of the porous titanium amino terephthalate MIL-125(Ti): adsorption equilibrium and separation of xylene isomers. <i>Langmuir</i> , 2012 , 28, 3494-502	4	48
440	Extraction of Polyphenolic Compounds from Eucalyptus globulus Bark: Process Optimization and Screening for Biological Activity. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 6991-7000	3.9	50
439	Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. <i>Chemical Engineering Journal</i> , 2012 , 197, 151-161	14.7	82
438	Adsorbent Evaluation Based on Experimental Breakthrough Curves: Separation of p-Xylene from C8 Isomers. <i>Chemical Engineering and Technology</i> , 2012 , 35, 1777-1785	2	16
437	Reverse shape selectivity in the liquid-phase adsorption of xylene isomers in zirconium terephthalate MOF UiO-66. <i>Langmuir</i> , 2012 , 28, 5715-23	4	98

(2011-2012)

436	Adsorption and Desorption Behavior of Lithium Ion in Spherical PVCMnO2 Ion Sieve. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 10921-10929	3.9	96
435	Fungal degradation of lignin-based rigid polyurethane foams. <i>Polymer Degradation and Stability</i> , 2012 , 97, 2069-2076	4.7	37
434	Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 7355-7363	3.9	72
433	Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing 2012 , 109-135		1
432	CO2 capture from flue gas by two successive VPSA units using 13XAPG. <i>Adsorption</i> , 2012 , 18, 445-459	2.6	45
431	Bridging the gap between Graetz's and lŷque's analyses for mass/heat transfer in a channel with uniform concentration or flux at the wall. <i>AICHE Journal</i> , 2012 , 58, 1880-1892	3.6	10
430	Sorption-Enhanced Steam Reforming of Ethanol: Thermodynamic Comparison of CO2 Sorbents. <i>Chemical Engineering and Technology</i> , 2012 , 35, 847-858	2	42
429	Chromatographic Reactors. Chemical Engineering and Technology, 2012, 35, 1171-1183	2	26
428	Steam reforming of ethanol on a Ni/Al2O3 catalyst coupled with a hydrotalcite-like sorbent in a multilayer pattern for co2 uptake. <i>Canadian Journal of Chemical Engineering</i> , 2012 , 90, 1514-1526	2.3	55
427	Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. <i>Carbohydrate Polymers</i> , 2012 , 88, 537-546	10.3	69
426	Effectiveness factor for thin catalytic coatings: Improved analytical approximation using perturbation techniques. <i>Chemical Engineering Science</i> , 2012 , 71, 46-55	4.4	16
425	Salt effects on solvent features of coexisting phases in aqueous polymer/polymer two-phase systems. <i>Journal of Chromatography A</i> , 2012 , 1229, 38-47	4.5	37
424	Fast-cycling VPSA for hydrogen purification. <i>Fuel</i> , 2012 , 93, 510-523	7.1	33
423	Chromatographic Separation of Isomaltooligosaccharides on Ion-Exchange Resins: Effect of the Cationic Form. <i>Adsorption Science and Technology</i> , 2012 , 30, 773-784	3.6	14
422	Insights into Oxidative Conversion of Lignin to High-Added-Value Phenolic Aldehydes. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 741-748	3.9	130
421	Ethyl lactate as a solvent: Properties, applications and production processes & review. <i>Green Chemistry</i> , 2011 , 13, 2658	10	325
420	Characterization and evaluation of commercial fragrance microcapsules for textile application. <i>Journal of the Textile Institute</i> , 2011 , 1-13	1.5	9
419	Dynamic Study of the Synthesis of 1,1-Dibutoxyethane in a Fixed-Bed Adsorptive Reactor. <i>Separation Science and Technology</i> , 2011 , 46, 631-640	2.5	17

418	Hydrogen Production via Sorption Enhanced Steam Methane Reforming Process Using Ni/CaO Multifunctional Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 13662-13671	3.9	84
417	Release of Thyme Oil from Polylactide Microcapsules. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 13752-13761	3.9	31
416	Modeling of the fixed - bed adsorption of carbon dioxide and a carbon dioxide - nitrogen mixture on zeolite 13X. <i>Brazilian Journal of Chemical Engineering</i> , 2011 , 28, 533-544	1.7	7°
415	Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture from flue gas. <i>Separation and Purification Technology</i> , 2011 , 81, 307-317	8.3	122
414	Criteria for kinetic and mass transfer control in a microchannel reactor with an isothermal first-order wall reaction. <i>Chemical Engineering Journal</i> , 2011 , 176-177, 3-13	14.7	18
413	Carbon dioxidelitrogen separation through pressure swing adsorption. <i>Chemical Engineering Journal</i> , 2011 , 172, 698-704	14.7	64
412	Analysis of the synthesis of 1,1-dibutoxyethane in a simulated moving-bed adsorptive reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2011 , 50, 1214-1225	3.7	29
411	Perturbation chromatography with inert core adsorbent: Moment solution for two-component nonlinear isotherm adsorption. <i>Chemical Engineering Science</i> , 2011 , 66, 4555-4560	4.4	6
410	Pressure swing adsorption for CO2 capture in Fischer-Tropsch fuels production from biomass. <i>Adsorption</i> , 2011 , 17, 443-452	2.6	12
409	Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads. <i>Adsorption</i> , 2011 , 17, 179-188	2.6	54
408	Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol. <i>Adsorption</i> , 2011 , 17, 145-158	2.6	20
407	Influence of the sodium and calcium non-framework cations on the adsorption of hexane isomers in zeolite BEA. <i>Theoretical Chemistry Accounts</i> , 2011 , 128, 695-703	1.9	6
406	Effect of catalyst activity in SMR-SERP for hydrogen production: Commercial vs. large-pore catalyst. <i>Chemical Engineering Science</i> , 2011 , 66, 342-354	4.4	29
405	Activated carbon for hydrogen purification by pressure swing adsorption: Multicomponent breakthrough curves and PSA performance. <i>Chemical Engineering Science</i> , 2011 , 66, 303-317	4.4	133
404	PermSMBRA new hybrid technology: Application on green solvent and biofuel production. <i>AICHE Journal</i> , 2011 , 57, 1840-1851	3.6	25
403	Approximate calculation of conversion with kinetic normalization for finite reaction rates in wall-coated microchannels. <i>AICHE Journal</i> , 2011 , 57, 2870-2887	3.6	9
402	Prediction of odour detection thresholds using partition coefficients. <i>Flavour and Fragrance Journal</i> , 2011 , 26, 421-428	2.5	11
401	Chiral separation of flurbiprofen enantiomers by preparative and simulated moving bed chromatography. <i>Chirality</i> , 2011 , 23, 602-11	2.1	23

(2010-2011)

40	Suitability of Cu-BTC extrudates for propane propylene separation by adsorption processes. Chemical Engineering Journal, 2011 , 167, 1-12	14.7	135
39	Carbon dioxidelitrogen separation through adsorption on activated carbon in a fixed bed. Chemical Engineering Journal, 2011 , 169, 11-19	14.7	122
39	New cycle configuration to enhance performance of kinetic PSA processes. <i>Chemical Engineering Science</i> , 2011 , 66, 1590-1599	4.4	31
39	Solvent properties governing protein partitioning in polymer/polymer aqueous two-phase systems. Journal of Chromatography A, 2011 , 1218, 1379-84	4.5	51
39	Influence of the Eluent in the MIL-53(Al) Selectivity for Xylene Isomers Separation. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 7688-7695	3.9	33
39	Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design. <i>Industrial & amp; Engineering Chemistry Research</i> , 2011 , 50, 974-985	3.9	54
39	Adsorption and Desorption of Carbon Dioxide and Nitrogen on Zeolite 5A. <i>Separation Science and Technology</i> , 2011 , 46, 434-451	2.5	58
39	Polylactide-Based Thyme Oil Microcapsules Production: Evaluation of Surfactants. <i>Industrial & amp;</i> Engineering Chemistry Research, 2011 , 50, 898-904	3.9	32
39	Adsorption of Water Vapor on Carbon Molecular Sieve: Thermal and Electrothermal Regeneration Study. <i>Industrial & District Study</i> . <i>Industrial & District S</i>	3.9	13
39	Evaluation of Group-Contribution Methods To Predict VLE and Odor Intensity of Fragrances. Industrial & Evaluation of Group-Contribution Methods To Predict VLE and Odor Intensity of Fragrances. Industrial & Indus	3.9	17
39	Surface B-splines fitting for speeding up the simulation of adsorption processes with IAS model. Computers and Chemical Engineering, 2011, 35, 1186-1191	4	6
38	Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. <i>Enzyme and Microbial Technology</i> , 2011 , 49, 183	3- 3 8	28
38	Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 2011, 139, 67-73	5.3	220
38	Kinetic study of the formation of lignin-based polyurethanes in bulk. <i>Reactive and Functional Polymers</i> , 2011 , 71, 863-869	4.6	62
38	Removal of Reactive Brilliant Orange X-GN from Aqueous Solutions By Mg-Al Layered Double Hydroxides. <i>Clays and Clay Minerals</i> , 2011 , 59, 438-445	2.1	5
38	Chiral Separation of Ketoprofen Enantiomers by Preparative and Simulated Moving Bed Chromatography. <i>Separation Science and Technology</i> , 2011 , 46, 1726-1739	2.5	27
38	Selective Liquid Phase Adsorption and Separation of ortho-Xylene with the Microporous MIL-53(Al). Separation Science and Technology, 2011 , 46, 1995-2003	2.5	32
38	Synthesis, structure, and catalytic performance in cyclooctene epoxidation of a molybdenum oxide/bipyridine hybrid material: {[MoO3(bipy)][MoO3(H2O)]}n. <i>Inorganic Chemistry</i> , 2010 , 49, 6865-73	5.1	53

382	Solvent properties governing solute partitioning in polymer/polymer aqueous two-phase systems: nonionic compounds. <i>Journal of Physical Chemistry B</i> , 2010 , 114, 457-62	3.4	44
381	Adsorption Dynamics of C5¶6 Isomerate Fractions in Zeolite Beta for the Octane Improvement of Gasoline. <i>Energy & Description</i> 24, 1931-1940	4.1	24
380	Comments on D emonstration of a Process for the Conversion of Kraft Lignin into Vanillin and Methyl Vanillate by Acidic Oxidation in Aqueous Methanol <i>Industrial & Dine Engineering Chemistry Research</i> , 2010 , 49, 3500-3500	3.9	
379	Potential Desorbents for Propane/Propylene Separation by Gas Phase Simulated Moving Bed: A Molecular Simulation Study. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 5826-5833	3.9	7
378	Octane Upgrading of C5/C6 Light Naphtha by Layered Pressure Swing Adsorption. <i>Energy & Energy & Energ</i>	4.1	13
377	Perfumery Radar: A Predictive Tool for Perfume Family Classification. <i>Industrial & Description of the Mistry Research</i> , 2010 , 49, 11764-11777	3.9	19
376	Comparative Study of Solid-Phase Extraction and Liquid Liquid Extraction for the Reliable Quantification of High Value Added Compounds from Oxidation Processes of Wood-Derived Lignin. <i>Industrial & Chemistry Research</i> , 2010 , 49, 12311-12318	3.9	49
375	Oxygenated Biofuels from Butanol for Diesel Blends: Synthesis of the Acetal 1,1-Dibutoxyethane Catalyzed by Amberlyst-15 Ion-Exchange Resin. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 6763-6771	3.9	35
374	Effect of Ion Exchange on the Adsorption of Steam Methane Reforming Off-Gases on Zeolite 13X. Journal of Chemical & Engineering Data, 2010, 55, 184-195	2.8	15
373	Outlet Stream Swing Simulated Moving Bed: Separation and Regeneration Regions Analysis. <i>Separation Science and Technology</i> , 2010 , 45, 2259-2272	2.5	12
372	Vacuum Pressure Swing Adsorption to Produce Polymer-Grade Propylene. <i>Separation Science and Technology</i> , 2010 , 45, 1252-1259	2.5	53
371	Modelling gas permeation through new microporous titanosilicate AM-3 membranes. <i>Chemical Engineering Journal</i> , 2010 , 165, 395-404	14.7	15
370	Methane steam reforming in large pore catalyst. <i>Chemical Engineering Science</i> , 2010 , 65, 1539-1550	4.4	62
369	Vanillin production from lignin oxidation in a batch reactor. <i>Chemical Engineering Research and Design</i> , 2010 , 88, 1024-1032	5.5	209
368	Challenges of electric swing adsorption for CO(2) capture. <i>ChemSusChem</i> , 2010 , 3, 892-8	8.3	26
367	A strategy for tailored design of efficient and low-pressure drop packed column chromatography. <i>AICHE Journal</i> , 2010 , 56, 3091-3098	3.6	12
366	Glycerol-Reforming Kinetics Using a Pt/C Catalyst. Chemical Engineering and Technology, 2010, 33, 1645	-1649	33
365	Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 5949-52	16.4	430

(2009-2010)

364	Batch and continuous studies for ethyl lactate synthesis in a pervaporation membrane reactor. Journal of Membrane Science, 2010 , 361, 43-55	9.6	43
363	Zeolite Beta membranes for the separation of hexane isomers. <i>Microporous and Mesoporous Materials</i> , 2010 , 128, 194-202	5.3	17
362	Microwave-assisted molybdenum-catalysed epoxidation of olefins. <i>Journal of Molecular Catalysis A</i> , 2010 , 320, 19-26		34
361	Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. <i>Chemical Engineering Journal</i> , 2010 , 160, 398-407	14.7	125
360	Propane/propylene separation with Li-exchanged zeolite 13X. <i>Chemical Engineering Journal</i> , 2010 , 160, 207-214	14.7	75
359	PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. <i>Chemical Engineering Journal</i> , 2010 , 163, 355-363	14.7	49
358	Diffusion of propane, propylene and isobutane in 13X zeolite by molecular dynamics. <i>Chemical Engineering Science</i> , 2010 , 65, 2656-2663	4.4	32
357	Molecular simulation of propane/propylene separation on the metalBrganic framework CuBTC. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 357, 27-34	5.1	63
356	Microwave-assisted synthesis and crystal structure of oxo(diperoxo)(4,4'-di-tert-butyl-2,2'-bipyridine)-molybdenum(VI). <i>Molecules</i> , 2009 , 14, 3610-20	4.8	19
355	Propane/Propylene Separation by Simulated Moving Bed II. Measurement and Prediction of Binary Adsorption Equilibria of Propane, Propylene, Isobutane, and 1-Butene on 13X Zeolite. <i>Separation Science and Technology</i> , 2009 , 44, 1485-1509	2.5	25
354	Convection, diffusion, and exothermic zero-order reaction in a porous catalyst slab: Scaling and perturbation analysis. <i>AICHE Journal</i> , 2009 , 55, 2686-2699	3.6	8
353	Four beds pressure swing adsorption for hydrogen purification: Case of humid feed and activated carbon beds. <i>AICHE Journal</i> , 2009 , 55, 2292-2302	3.6	41
352	Separation of chiral mixtures in real SMB units: The FlexSMB-LSRE① . AICHE Journal, 2009, 56, NA-NA	3.6	2
351	Glycerol Reforming for Hydrogen Production: A Review. <i>Chemical Engineering and Technology</i> , 2009 , 32, 1463-1469	2	211
350	Steam methane reforming in a Ni/Al2O3 catalyst: Kinetics and diffusional limitations in extrudates. <i>Canadian Journal of Chemical Engineering</i> , 2009 , 87, 945-956	2.3	71
349	Optimization of the mobile phase composition for preparative chiral separation of flurbiprofen enantiomers. <i>Separation and Purification Technology</i> , 2009 , 68, 9-23	8.3	12
348	A novel process for the ethyl lactate synthesis in a simulated moving bed reactor (SMBR). <i>Chemical Engineering Science</i> , 2009 , 64, 3301-3310	4.4	48
347	Adsorption of propane, propylene and isobutane on a metal b rganic framework: Molecular simulation and experiment. <i>Chemical Engineering Science</i> , 2009 , 64, 3246-3259	4.4	177

346	An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. <i>Chemical Engineering Research and Design</i> , 2009 , 87, 1276-1292	5.5	314
345	Adsorption of small molecules on alkali-earth modified titanosilicates. <i>Microporous and Mesoporous Materials</i> , 2009 , 121, 114-120	5.3	25
344	Amino acid-functionalized cyclopentadienyl molybdenum tricarbonyl complex and its use in catalytic olefin epoxidation. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 1826-1833	2.3	42
343	Structured packed bubble column reactor for continuous production of vanillin from Kraft lignin oxidation. <i>Catalysis Today</i> , 2009 , 147, S330-S335	5.3	36
342	Scentfashion : Microencapsulated perfumes for textile application. <i>Chemical Engineering Journal</i> , 2009 , 149, 463-472	14.7	161
341	Design of a gas phase simulated moving bed for propane/propylene separation. <i>Chemical Engineering Science</i> , 2009 , 64, 1336-1357	4.4	63
340	The diffusion of perfume mixtures and the odor performance. <i>Chemical Engineering Science</i> , 2009 , 64, 2570-2589	4.4	27
339	Electric swing adsorption as emerging CO2 capture technique. <i>Energy Procedia</i> , 2009 , 1, 1219-1225	2.3	61
338	Modeling of solid I quid adsorption: Effects of adsorbent loads on model parameters. <i>Canadian Journal of Chemical Engineering</i> , 2009 , 70, 690-698	2.3	10
337	Separation of Racemic Chiral Drugs Using Immobilized CHIRALPAK IA: Methodology for Preparative Scale Development. <i>Separation Science and Technology</i> , 2009 , 44, 275-303	2.5	15
336	Adsorption of H2, CO2, CH4, CO, N2 and H2O in Activated Carbon and Zeolite for Hydrogen Production. <i>Separation Science and Technology</i> , 2009 , 44, 1045-1073	2.5	131
335	Optimization Study of Lignin Oxypropylation in View of the Preparation of Polyurethane Rigid Foams. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2583-2589	3.9	204
334	Single- and Multicomponent Vapor-Phase Adsorption of Xylene Isomers and Ethylbenzene in a Microporous Metal Drganic Framework. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13173-13179	3.8	81
333	Microencapsulation of thyme oil by coacervation. <i>Journal of Microencapsulation</i> , 2009 , 26, 667-75	3.4	51
332	Adsorption of Carbon Dioxide onto Activated Carbon and Nitrogen-Enriched Activated Carbon: Surface Changes, Equilibrium, and Modeling of Fixed-Bed Adsorption. <i>Separation Science and Technology</i> , 2009 , 45, 73-84	2.5	57
331	Fixed Bed Adsorptive Reactor for Ethyl Lactate Synthesis: Experiments, Modelling, and Simulation. <i>Separation Science and Technology</i> , 2009 , 44, 2721-2749	2.5	28
330	Enhancing Capacity of Activated Carbons for Hydrogen Purification. <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Activated Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Carbons for Hydrogen Purification</i> . <i>Industrial & Description of Carbons for Hydrogen Purification of Carbons for Car</i>	3.9	25
329	CO2 Capture from NGCC Power Stations using Electric Swing Adsorption (ESA). <i>Energy & amp; Fuels</i> , 2009 , 23, 2797-2803	4.1	48

(2008-2009)

328	Liquid phase selective oxidation of diphenylmethane to benzophenone over ternary hydrotalcites with tert-butylhydroperoxide. <i>Catalysis Communications</i> , 2009 , 10, 1212-1215	3.2	13
327	Monitoring of lignin-based polyurethane synthesis by FTIR-ATR. <i>Industrial Crops and Products</i> , 2008 , 27, 168-174	5.9	83
326	Adsorption of CO2, CH4, and N2 in Activated Carbon Honeycomb Monolith. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2311-2317	2.8	104
325	Adsorption Equilibrium and Kinetics of Water Vapor on Different Adsorbents. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 7019-7026	3.9	62
324	Microencapsulation of Limonene for Textile Application. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 4142-4147	3.9	92
323	A Microporous Metal©rganic Framework for Separation of CO2/N2and CO2/CH4by Fixed-Bed Adsorption. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 1575-1581	3.8	398
322	Multifunctional Reactor for the Synthesis of Dimethylacetal. <i>Industrial & Dimethylacetal &</i>	3.9	33
321	Adsorption of Off-Gases from Steam Methane Reforming (H2, CO2, CH4, CO and N2) on Activated Carbon. <i>Separation Science and Technology</i> , 2008 , 43, 1338-1364	2.5	66
320	Thermodynamic Equilibrium and Reaction Kinetics for the Esterification of Lactic Acid with Ethanol Catalyzed by Acid Ion-Exchange Resin. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1453-	1483	76
319	Metal Organic Framework Adsorbent for Biogas Upgrading. <i>Industrial & amp; Engineering Chemistry Research</i> , 2008 , 47, 6333-6335	3.9	157
318	Single and Multicomponent Sorption of CO2, CH4 and N2 in a Microporous Metal-Organic Framework. <i>Separation Science and Technology</i> , 2008 , 43, 3494-3521	2.5	51
317	Equilibrium and Fixed Bed Adsorption of 1-Butene, Propylene and Propane Over 13X Zeolite Pellets. <i>Separation Science and Technology</i> , 2008 , 43, 1124-1156	2.5	31
316	Chiral Separation of R,S-fretralol by Simulated Moving Bed. <i>Separation Science and Technology</i> , 2008 , 43, 727-765	2.5	17
315	Design Methodology and Performance Analysis of a Pseudo-Simulated Moving Bed for Ternary Separation. <i>Separation Science and Technology</i> , 2008 , 43, 533-566	2.5	24
314	Adsorption Equilibrium of Isobutane and 1-Butene in Zeolite 13X by Molecular Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 6166-6174	3.9	33
313	Operation of an Industrial SMB Unit for p-xylene Separation Accounting for Adsorbent Ageing Problems. <i>Separation Science and Technology</i> , 2008 , 43, 1974-2002	2.5	20
312	Separation Region and Strategies for Proteins Separation by Salt Gradient Ion-Exchange SMB. <i>Separation Science and Technology</i> , 2008 , 43, 11-28	2.5	10
311	RIGID POLYURETHANE FOAMS FROM LIGNIN BASED-POLYOLS. AIP Conference Proceedings, 2008,	О	4

310	Analysis of the boundary conditions for the simulation of the pressure equalization step in PSA cycles. <i>Chemical Engineering Science</i> , 2008 , 63, 4452-4463	4.4	24
309	A parametric study of layered bed PSA for hydrogen purification. <i>Chemical Engineering Science</i> , 2008 , 63, 5258-5273	4.4	154
308	Study on hexane adsorption in zeolite ITQ-29 by molecular simulation. <i>Adsorption</i> , 2008 , 14, 763-770	2.6	6
307	Lignins as macromonomers for polyurethane synthesis: A comparative study on hydroxyl group determination. <i>Journal of Applied Polymer Science</i> , 2008 , 109, 3008-3017	2.9	108
306	Preparative separation of ketoprofen enantiomers: Choice of mobile phase composition and measurement of competitive adsorption isotherms. <i>Separation and Purification Technology</i> , 2008 , 61, 375-383	8.3	25
305	CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures. <i>Separation and Purification Technology</i> , 2008 , 62, 137-147	8.3	189
304	Performance of simulated moving bed with conventional and monolith columns. <i>Separation and Purification Technology</i> , 2008 , 63, 324-333	8.3	12
303	Selection of resins, equilibrium and sorption kinetics of lactobionic acid, fructose, lactose and sorbitol. <i>Separation and Purification Technology</i> , 2008 , 63, 600-611	8.3	38
302	Liquid phase catalytic oxidation of isophorone with tert-butylhydroperoxide over Cu/Co/FeMgAl ternary hydrotalcites. <i>Applied Catalysis A: General</i> , 2008 , 345, 104-111	5.1	25
301	Simulated moving bed reactor for isomerization and separation of p-xylene. <i>Chemical Engineering Journal</i> , 2008 , 140, 305-323	14.7	99
300	Thermodynamic and Kinetic Study of Adsorption of R,S-Tetralol Enantiomers on the Chiral Adsorbent CHIRALPAK AD. <i>Separation Science and Technology</i> , 2007 , 42, 739-768	2.5	10
299	Layered Vacuum Pressure-Swing Adsorption for Biogas Upgrading. <i>Industrial & amp; Engineering Chemistry Research</i> , 2007 , 46, 7844-7848	3.9	44
298	Carbon Dioxide Adsorption in Brazilian Coals. Energy & Energy & Energy & 2007, 21, 209-215	4.1	18
297	Outlet Streams Swing (OSS) and MultiFeed Operation of Simulated Moving Beds. <i>Separation Science and Technology</i> , 2007 , 42, 223-252	2.5	40
296	Molecular Simulation of Propane P ropylene Binary Adsorption Equilibrium in Zeolite 4A. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 321-328	3.9	36
295	Propane/Propylene Separation by Simulated Moving Bed I. Adsorption of Propane, Propylene and Isobutane in Pellets of 13X Zeolite. <i>Separation Science and Technology</i> , 2007 , 42, 2539-2566	2.5	42
294	Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 4595-4605	3.9	80
293	Catalytic oxidation of isophorone to ketoisophorone over ruthenium supported MgAl-hydrotalcite. Catalysis Communications, 2007, 8, 1156-1160	3.2	10

(2007-2007)

292	Understanding and revamping of industrial scale SMB units for p-xylene separation. <i>AICHE Journal</i> , 2007 , 53, 138-149	3.6	102
291	Convection, diffusion and reaction in a nonisothermal, porous catalyst slab. <i>AICHE Journal</i> , 2007 , 53, 1325-1336	3.6	11
290	Multicomponent sorption of hexane isomers in zeolite BETA. AICHE Journal, 2007, 53, 1970-1981	3.6	27
289	Acetaldehyde dimethylacetal synthesis with Smopex 101 fibres as catalyst/adsorbent. <i>Chemical Engineering Science</i> , 2007 , 62, 907-918	4.4	14
288	Simulation of true moving bed adsorptive reactor: Detailed particle model and linear driving force approximations. <i>Chemical Engineering Science</i> , 2007 , 62, 1026-1041	4.4	14
287	Quantification of lactobionic acid and sorbitol from enzymatic reaction of fructose and lactose by high-performance liquid chromatography. <i>Journal of Chromatography A</i> , 2007 , 1145, 128-32	4.5	20
286	Modelling and simulation of pear drying. Applied Mathematics and Computation, 2007, 192, 69-77	2.7	16
285	Recovery of vanillin from lignin/vanillin mixture by using tubular ceramic ultrafiltration membranes. Journal of Membrane Science, 2007 , 301, 221-237	9.6	67
284	Electric Swing Adsorption for CO2 removal from flue gases. <i>International Journal of Greenhouse Gas Control</i> , 2007 , 2, 194-194	4.2	28
283	Experimental characterization and modelling of analytical monolithic column. <i>Journal of Proteomics</i> , 2007 , 70, 95-105		16
282	Recovery of vanillin from Kraft lignin oxidation by ion-exchange with neutralization. <i>Separation and Purification Technology</i> , 2007 , 55, 56-68	8.3	30
281	Measurement of pore diffusivity of R,S-Fretralol enantiomers in chiral adsorbent CHIRALPAK AD by zero length column method. <i>Separation and Purification Technology</i> , 2007 , 57, 74-84	8.3	4
280	Production of rose geranium oil using supercritical fluid extraction. <i>Journal of Supercritical Fluids</i> , 2007 , 41, 50-60	4.2	77
279	Separation of branched hexane isomers using zeolite BEA for the octane improvement of gasoline pool. <i>Studies in Surface Science and Catalysis</i> , 2007 , 170, 955-960	1.8	4
278	Separation of Branched Hexane Isomers on Zeolite BETA. <i>Adsorption Science and Technology</i> , 2007 , 25, 169-183	3.6	7
277	Kinetic separation of hexane isomers by fixed-bed adsorption with a microporous metal-organic framework. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 6101-3	3.4	162
276	Molecular Simulation of Propane P ropylene Binary Adsorption Equilibrium in Zeolite 13X. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7239-7245	3.9	45
275	Operation Strategies for Simulated Moving Bed in the Presence of Adsorbent Ageing. <i>Separation Science and Technology</i> , 2007 , 42, 3555-3591	2.5	8

274	Insight into steam reforming of ethanol to produce hydrogen for fuel cells. <i>Chemical Engineering Journal</i> , 2006 , 117, 39-49	14.7	520
273	Kinetic studies in a batch reactor using ion exchange resin catalysts for oxygenates production: Role of mass transfer mechanisms. <i>Chemical Engineering Science</i> , 2006 , 61, 316-331	4.4	55
272	Expanded bed adsorption/desorption of proteins with Streamline Direct CST I adsorbent. <i>Biotechnology and Bioengineering</i> , 2006 , 94, 1155-63	4.9	32
271	Design of chromatographic multicomponent separation by a pseudo-simulated moving bed. <i>AICHE Journal</i> , 2006 , 52, 3794-3812	3.6	31
270	Diffusion and reaction in a porous catalyst slab: Perturbation solutions. <i>AICHE Journal</i> , 2006 , 52, 3924-3	1938	8
269	Adsorption of CO2 on Hydrotalcite-like Compounds in a Fixed Bed. <i>Separation Science and Technology</i> , 2006 , 41, 341-357	2.5	44
268	Kinetics of Steam Reforming of Ethanol over a Ru/Al2O3 Catalyst. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2006 , 45, 6614-6618	3.9	92
267	Chromatography: A Non-Analytical View 2006, 187-205		
266	Separation by Fixed-Bed Adsorption of Hexane Isomers in Zeolite BETA Pellets. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 4316-4328	3.9	46
265	Removal of Carbon Dioxide from Natural Gas by Vacuum Pressure Swing Adsorption. <i>Energy & Energy & Ene</i>	4.1	194
264	Synthesis of 1,1-Dimethoxyethane in a Fixed Bed Adsorptive Reactor. <i>Industrial & amp; Engineering Chemistry Research</i> , 2006 , 45, 2032-2039	3.9	14
263	Design and optimization of new simulated moving bed plants. <i>Brazilian Journal of Chemical Engineering</i> , 2006 , 23, 171-181	1.7	4
262	Glucose isomerization in simulated moving bed reactor by Glucose isomerase. <i>Brazilian Archives of Biology and Technology</i> , 2006 , 49, 491-502	1.8	19
261	Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon. <i>Chemical Engineering Journal</i> , 2006 , 118, 77-82	14.7	141
260	Analysis of the high-fructose syrup production using reactive SMB technology. <i>Chemical Engineering Journal</i> , 2006 , 118, 167-181	14.7	41
259	Experimental and modeling study of adsorption in preparative monolithic silica column. <i>Chemical Engineering and Processing: Process Intensification</i> , 2006 , 45, 150-160	3.7	26
258	Adsorption of propane and propylene in zeolite 4A honeycomb monolith. <i>Chemical Engineering Science</i> , 2006 , 61, 3053-3067	4.4	55
257	Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. <i>Chemical Engineering Science</i> , 2006 , 61, 3893-3906	4.4	218

(2005-2006)

256	Separation of synthetic vanillin at different pH onto polymeric adsorbent Sephabeads SP206. <i>Chemical Engineering and Processing: Process Intensification</i> , 2006 , 45, 598-607	3.7	28	
255	Simulated moving bed technology: old and new. <i>Adsorption</i> , 2006 , 12, 375-392	2.6	67	
254	Propane/Propylene Separation by Pressure Swing Adsorption Using Zeolite 4A. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 8815-8829	3.9	94	
253	Analysis of the Behavior of the Simulated Moving Bed Reactor in the Sucrose Inversion Process. <i>Separation Science and Technology</i> , 2005 , 40, 2373-2389	2.5	5	
252	Upgrade of Methane from Landfill Gas by Pressure Swing Adsorption. <i>Energy & Description and Energy & Description</i> (19, 25)	4 5 ‡2155	5129	
251	Carbon Molecular Sieves for Hydrocarbon Separations by Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7218-7227	3.9	44	
250	Fixed-Bed Adsorption of Salicylic Acid onto Polymeric Adsorbents and Activated Charcoal. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 927-936	3.9	27	
249	Effect of Nonidealities in Perfume Mixtures Using the Perfumery Ternary Diagrams (PTD) Concept. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4435-4441	3.9	13	
248	Analytical Solution for Reactive Simulated Moving Bed in the Presence of Mass Transfer Resistance. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 5246-5255	3.9	11	
247	Phenolic wastewaters purification by thermal parametric pumping: modeling and pilot-scale experiments. <i>Water Research</i> , 2005 , 39, 3467-78	12.5	22	
246	Design of SMB Chiral Separations Using the Concept of Separation Volume. <i>Separation Science and Technology</i> , 2005 , 39, 245-270	2.5	35	
245	Separation of Methane and Nitrogen by Adsorption on Carbon Molecular Sieve. <i>Separation Science and Technology</i> , 2005 , 40, 2721-2743	2.5	68	
244	Hydrotalcite Materials for Carbon Dioxide Adsorption at High Temperatures: Characterization and Diffusivity Measurements. <i>Separation Science and Technology</i> , 2005 , 39, 1989-2010	2.5	35	
243	Process Development for Dimethylacetal Synthesis: Thermodynamics and Reaction Kinetics. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 7287-7297	3.9	24	
242	Hydrogen production from steam methane reforming coupled with in situ CO2 capture: Conceptual parametric study. <i>Fuel</i> , 2005 , 84, 1778-1789	7.1	56	
241	Adsorption equilibrium and kinetics of branched hexane isomers in pellets of BETA zeolite. <i>Microporous and Mesoporous Materials</i> , 2005 , 79, 145-163	5.3	63	
240	Adsorptive purification of phenol wastewaters: Experimental basis and operation of a parametric pumping unit. <i>Chemical Engineering Journal</i> , 2005 , 110, 101-111	14.7	38	
239	Modelling and simulation in chemical engineering: Tools for process innovation. <i>Computers and Chemical Engineering</i> , 2005 , 29, 1167-1183	4	29	

238	Two-level optimization of an existing SMB for p-xylene separation. <i>Computers and Chemical Engineering</i> , 2005 , 29, 2215-2228	4	53
237	Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). <i>Biochemical Engineering Journal</i> , 2005 , 25, 1-6	4.2	52
236	Perfumery ternary diagrams (PTD): a new concept applied to the optimization of perfume compositions. <i>Flavour and Fragrance Journal</i> , 2005 , 20, 465-471	2.5	7
235	Novel process for diethylacetal synthesis. AICHE Journal, 2005, 51, 2752-2768	3.6	58
234	Simulated moving-bed reactor: ReactiveBeparation regions. AICHE Journal, 2005, 51, 2737-2751	3.6	15
233	Experimental and modeling study of protein adsorption in expanded bed. AICHE Journal, 2005, 51, 2965	5-2 .0 77	36
232	Fixed-bed irreversible adsorption with pore diffusion and axial dispersion. AICHE Journal, 2005, 51, 328	6 3 36291	1
231	Modeling of vanillin production in a structured bubble column reactor. <i>Catalysis Today</i> , 2005 , 105, 574-5	5 & .13	20
230	Comparative study of the adsorption of phenol and salicylic acid from aqueous solution onto nonionic polymeric resins. <i>Separation and Purification Technology</i> , 2005 , 45, 86-95	8.3	88
229	Experimental and Theoretical Analysis for the CO2 Adsorption on Hydrotalcite. <i>Adsorption</i> , 2005 , 11, 237-241	2.6	20
228	Layered Pressure Swing Adsorption for Methane Recovery from CH4/CO2/N2 Streams. <i>Adsorption</i> , 2005 , 11, 549-554	2.6	36
227	Propane/Propene Separation by SBA-15 and Ecomplexated Ag-SBA-15. <i>Adsorption</i> , 2005 , 11, 775-780	2.6	19
226	Simulated Moving Bed Technology in the Reactive Process of Glucose Isomerization. <i>Adsorption</i> , 2005 , 11, 847-851	2.6	9
225	Salicylic Acid Adsorption onto Sephabeads SP206 in View of its Purification by Thermal Parametric Pumping. <i>Adsorption</i> , 2005 , 11, 887-892	2.6	8
224	Characterisation of the phenolic profile of Boerhaavia diffusa L. by HPLC-PAD-MS/MS as a tool for quality control. <i>Phytochemical Analysis</i> , 2005 , 16, 451-8	3.4	34
223	The numerical solution of moving boundary problems using the moving finite element method. <i>Computer Aided Chemical Engineering</i> , 2005 , 20, 79-84	0.6	2
222	Separation of Fructose and Glucose from Cashew Apple Juice by SMB Chromatography. <i>Separation Science and Technology</i> , 2005 , 40, 1761-1780	2.5	18
221	Characterization of the Portuguese-Grown Cistus ladanifer Essential Oil. <i>Journal of Essential Oil Research</i> , 2005 , 17, 160-165	2.3	48

(2003-2004)

220	Recovery of Vitamin B12 and cephalosporin-C from aqueous solutions by adsorption on non-ionic polymeric adsorbents. <i>Separation and Purification Technology</i> , 2004 , 38, 85-98	8.3	36
219	Adsorption of Xylenes on Faujasite-Type Zeolite. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 667-681	5.5	67
218	Subsection-Controlling Strategy for Improving Sorption-Enhanced Reaction Process. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 192-202	5.5	20
217	Adsorption Kinetics of Propane and Propylene in Zeolite 4A. <i>Chemical Engineering Research and Design</i> , 2004 , 82, 1604-1612	5.5	48
216	Density functional theoretical study of water molecular adsorption on surface of MoO3 with the cluster model. <i>Computational and Theoretical Chemistry</i> , 2004 , 684, 81-85		7
215	Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. <i>Reactive and Functional Polymers</i> , 2004 , 60, 203-213	4.6	87
214	Modeling breakthrough and elution curves in fixed bed of inert core adsorbents: analytical and approximate solutions. <i>Chemical Engineering Science</i> , 2004 , 59, 3091-3103	4.4	29
213	A 3-zone model for protein adsorption kinetics in expanded beds. <i>Chemical Engineering Science</i> , 2004 , 59, 3837-3847	4.4	21
212	Preparation, characterization and deactivation studies of CoMo/Al2O3 deoxidizing catalyst. <i>Applied Catalysis A: General</i> , 2004 , 270, 143-149	5.1	3
211	Transient and steady-state models for simulated moving bed processes: numerical solutions. <i>Computers and Chemical Engineering</i> , 2004 , 28, 1725-1741	4	27
210	Moving finite element method: applications to science and engineering problems. <i>Computers and Chemical Engineering</i> , 2004 , 28, 597-603	4	13
209	Characterization of Portuguese-Grown Geranium Oil (Pelargonium sp.). <i>Journal of Essential Oil Research</i> , 2004 , 16, 490-495	2.3	15
208	Adsorption of Binary Mixtures of Propane P ropylene in Carbon Molecular Sieve 4A. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 8057-8065	3.9	26
207	Novel Analytical Solution for a Simulated Moving Bed in the Presence of Mass-Transfer Resistance. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 4494-4502	3.9	32
206	Crystal Size Effect in Vacuum Pressure-Swing Adsorption for Propane/Propylene Separation. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 7557-7565	3.9	12
205	New pi-complexation adsorbents for propane-propylene separation. <i>Langmuir</i> , 2004 , 20, 5291-7	4	54
204	Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures. <i>Journal of Chemical & Data</i> , 2004, 49, 1095-1101	2.8	864
203	Influence of the Transfer Line Dead Volume on the Performance of an Industrial Scale Simulated Moving Bed for p-Xylene Separation. <i>Separation Science and Technology</i> , 2003 , 38, 1463-1497	2.5	38

202	Moving finite element method: Applications to science and engineering problems. <i>Computer Aided Chemical Engineering</i> , 2003 , 14, 611-616	0.6	
201	Flow and Mass Transfer. Journal of Chromatography Library, 2003, 325-350		9
200	Propane P ropylene Binary Adsorption on Zeolite 4A. <i>Adsorption</i> , 2003 , 9, 321-329	2.6	40
199	Analytical breakthrough curves for inert core adsorbent with sorption kinetics. <i>AICHE Journal</i> , 2003 , 49, 2974-2979	3.6	20
198	Adsorption of propane and propylene onto carbon molecular sieve. <i>Carbon</i> , 2003 , 41, 2533-2545	10.4	57
197	New generalized strategy for improving sorption-enhanced reaction process. <i>Chemical Engineering Science</i> , 2003 , 58, 3425-3437	4.4	59
196	Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns. <i>Journal of Chromatography A</i> , 2003 , 1006, 33-44	4.5	67
195	Cyclic steady state of simulated moving bed processes for enantiomers separation. <i>Chemical Engineering and Processing: Process Intensification</i> , 2003 , 42, 93-104	3.7	38
194	Frequency response of linear systems containing pure capacitance elements. <i>Chemical Engineering and Processing: Process Intensification</i> , 2003 , 42, 939-942	3.7	
193	A moving finite element method for the solution of two-dimensional time-dependent models. <i>Applied Numerical Mathematics</i> , 2003 , 44, 449-469	2.5	11
192	Adsorption-enhanced steam-methane reforming with intraparticle-diffusion limitations. <i>Chemical Engineering Journal</i> , 2003 , 95, 83-93	14.7	49
191	Modeling separation of proteins by inert core adsorbent in a batch adsorber. <i>Chemical Engineering Science</i> , 2003 , 58, 3361-3371	4.4	36
190	Rebuttal to Comments on An Analytical Solution for the Analysis of Zero-Length-Column Experiments with Heat Effects [Industrial & Experiments with Heat Effects with Heat Ef	3.9	О
189	Hydrotalcite-like compounds as adsorbents for carbon dioxide. <i>Energy Conversion and Management</i> , 2002 , 43, 1865-1876	10.6	183
188	Adsorption of carbon dioxide at high temperature review. <i>Separation and Purification Technology</i> , 2002 , 26, 195-205	8.3	393
187	Dynamics of a fixed-bed adsorptive reactor for synthesis of diethylacetal. AICHE Journal, 2002, 48, 625-	63҈.∯	45
186	Simulation of five-step one-bed sorption-enhanced reaction process. AICHE Journal, 2002, 48, 2817-283	 1 2 3.6	62
185	The role of intraparticle convection in protein adsorption by liquid chromatography using POROS 20 HQ/M particles. <i>Biochemical Engineering Journal</i> , 2002 , 11, 33-48	4.2	16

(2001-2002)

184	Dextran and fructose separation on an SMB continuous chromatographic unit. <i>Biochemical Engineering Journal</i> , 2002 , 12, 215-221	4.2	14
183	Sorption-enhanced reaction process with reactive regeneration. <i>Chemical Engineering Science</i> , 2002 , 57, 3893-3908	4.4	149
182	An analytical and experimental study of heat transfer in fixed bed. <i>International Journal of Heat and Mass Transfer</i> , 2002 , 45, 951-961	4.9	16
181	Process Integration of Separation of Amino Acids by a Temperature-Induced Aqueous Two-Phase System. <i>Industrial & Description of Chemistry Research</i> , 2002 , 41, 251-256	3.9	25
180	Regeneration of Fixed-Bed Adsorbers Saturated with Single and Binary Mixtures of Phenol andm-Cresol. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 6165-6174	3.9	6
179	Modeling and Simulation of a Simulated Moving Bed for the Separation of p-Xylene. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 3454-3461	3.9	83
178	Adsorption of Propane and Propylene in Pellets and Crystals of 5A Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 85-92	3.9	67
177	Adsorbent Materials for Carbon Dioxide. Adsorption Science and Technology, 2001, 19, 255-266	3.6	13
176	Applications of a moving finite element method. Chemical Engineering Journal, 2001, 84, 23-29	14.7	14
175	Design methodology and operation of a simulated moving bed reactor for the inversion of sucrose and glucosefructose separation. <i>Chemical Engineering Journal</i> , 2001 , 82, 95-107	14.7	70
174	Mass-transfer limitations for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor. <i>Biotechnology and Bioengineering</i> , 2001 , 74, 29-39	4.9	27
173	Propylene/propane separation by vacuum swing adsorption using 13X zeolite. <i>AICHE Journal</i> , 2001 , 47, 341-357	3.6	159
172	Fructosegucose separation in a SMB pilot unit: Modeling, simulation, design, and operation. <i>AICHE Journal</i> , 2001 , 47, 2042-2051	3.6	83
171	Diethylacetal Synthesis with Acid Resin Catalysts: Dynamics of a Fixed Bed Adsorptive Reactor. <i>Chemie-Ingenieur-Technik</i> , 2001 , 73, 658-658	0.8	
170	Modification of pore size in activated carbon by polymer deposition and its effects on molecular sieve selectivity. <i>Carbon</i> , 2001 , 39, 2269-2276	10.4	31
169	Synthesis of diethylacetal: thermodynamic and kinetic studies. <i>Chemical Engineering Science</i> , 2001 , 56, 1255-1263	4.4	51
168	Separation of ternary mixtures by pseudo-simulated moving bed chromatography. <i>Journal of Chromatography A</i> , 2001 , 939, 23-40	4.5	64
167	Adsorption of Carbon Dioxide on Chemically Modified High Surface Area Carbon-Based Adsorbents at High Temperature. <i>Adsorption</i> , 2001 , 7, 41-50	2.6	113

166	A Stefan-Maxwell Model of Single Pore Pressurization for Langmuir Adsorption of Gas Mixtures. <i>Adsorption</i> , 2001 , 7, 171-187	2.6	1
165	PSA simulation using particle complex models. Separation and Purification Technology, 2001, 24, 1-11	8.3	8
164	Oxygen separation from air by PSA: modelling and experimental results: Part I: isothermal operation. <i>Separation and Purification Technology</i> , 2001 , 24, 173-188	8.3	43
163	Adsorption Equilibria and Kinetics of Propane and Propylene in Silica Gel. <i>Industrial & amp; Engineering Chemistry Research</i> , 2001 , 40, 1686-1693	3.9	36
162	Competitive Adsorption of Phenolic Compounds onto Activated Carbon Fibers in Fixed Bed. <i>Journal of Environmental Engineering, ASCE</i> , 2001 , 127, 730-734	2	6
161	ADSORPTION AND DESORPTION OF PHENOL ON ACTIVATED CARBON FIBERS IN A FIXED BED. <i>Separation Science and Technology</i> , 2001 , 36, 2147-2163	2.5	12
160	Adsorption of basic dyes on granular activated carbon and natural zeolite. <i>Water Research</i> , 2001 , 35, 3357-66	12.5	436
159	Vacuum Swing Adsorption for Propylene/Propane Separation with 4A Zeolite. <i>Industrial &</i> Engineering Chemistry Research, 2001, 40, 5758-5774	3.9	71
158	A MaxwellBtefan Model of Bidisperse Pore Pressurization for Langmuir Adsorption of Gas Mixtures. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2001 , 40, 2289-2301	3.9	10
157	An Analytical Solution for the Analysis of Zero-Length-Column Experiments with Heat Effects. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 3697-3702	3.9	12
156	Adsorption of Carbon Dioxide onto Hydrotalcite-like Compounds (HTlcs) at High Temperatures. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 204-209	3.9	244
155	The Separation Enhanced Reaction Process (SERP) in the Production of Hydrogen from Methane Steam Reforming. <i>Adsorption Science and Technology</i> , 2001 , 19, 655-671	3.6	10
154	The removal of reactive dyes using high-ash char. <i>Brazilian Journal of Chemical Engineering</i> , 2001 , 18, 327-336	1.7	14
153	A package for thermal parametric pumping adsorptive processes. <i>Chemical Engineering Journal</i> , 2000 , 76, 115-125	14.7	11
152	Phenol biodegradation by Pseudomonas putida DSM 548 in a batch reactor. <i>Biochemical Engineering Journal</i> , 2000 , 6, 45-49	4.2	125
151	Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512(f). <i>Biochemical Engineering Journal</i> , 2000 , 4, 177-188	4.2	76
150	Modelling multicomponent adsorption process by a moving finite element method. <i>Journal of Computational and Applied Mathematics</i> , 2000 , 115, 169-179	2.4	9
149	Chiral separation by SMB chromatography. Separation and Purification Technology, 2000, 20, 67-77	8.3	47

148	Separation of n/iso paraffins by PSA. Separation and Purification Technology, 2000, 20, 97-110	8.3	27
147	PROPYLENE/PROPANE SEPARATION BY PRESSURE SWING ADSORPTION 2000,		6
146	Mass-Transfer Limitations for Immobilized Enzyme-Catalyzed Kinetic Resolution of Racemate in a Batch Reactor. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2000 , 39, 4054-4062	3.9	26
145	Adsorption of Carbon Dioxide on Basic Alumina at High Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 1093-1095	2.8	78
144	Obtainment of High-Fructose Solutions from Cashew (Anacardium occidentale) Apple Juice by Simulated Moving-Bed Chromatography. <i>Separation Science and Technology</i> , 2000 , 35, 2561-2581	2.5	27
143	Analysis of Nonisobaric Steps in Nonlinear Bicomponent Pressure Swing Adsorption Systems. Application to Air Separation. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 138-145	3.9	18
142	Effect of Coke in the Equilibrium and Kinetics of Sorption on 5A Molecular Sieve Zeolites. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 1030-1034	3.9	6
141	Influence of nitrogen/carbon ratio and complementary sugars on dextransucrase production by Leuconostoc mesenteroides NRRL B512(f) <i>Process Biochemistry</i> , 1999 , 34, 879-884	4.8	7
140	Modeling and simulation of protein adsorption in permeable chromatographic packings: a double linear driving force model. <i>Biochemical Engineering Journal</i> , 1999 , 3, 131-139	4.2	8
139	Enantiomers separation by simulated moving bed chromatography. Non-instantaneous equilibrium at the solid-fluid interface. <i>Journal of Chromatography A</i> , 1999 , 865, 187-200	4.5	22
138	Linear chromatographic elution and breakthrough curves: quasi-lognormal distribution function and its derived equations. <i>Chemical Engineering Science</i> , 1999 , 54, 377-387	4.4	3
137	Binary Adsorption of Phenol and m-Cresol Mixtures onto a Polymeric Adsorbent. <i>Adsorption</i> , 1999 , 5, 359-368	2.6	14
136	A General Package for the Simulation of Cyclic Adsorption Processes. <i>Adsorption</i> , 1999 , 5, 229-244	2.6	105
135	Multisite Langmuir Model Applied to the Interpretation of Sorption of n-Paraffins in 5A Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2434-2438	3.9	55
134	Design of a simulated moving bed in the presence of mass-transfer resistances. <i>AICHE Journal</i> , 1999 , 45, 956-966	3.6	105
133	Bilinear Driving Force Approximation in the Modeling of a Simulated Moving Bed Using Bidisperse Adsorbents. <i>Industrial & Description of the Modeling Chemistry Research</i> , 1999 , 38, 3519-3529	3.9	27
132	Adsorption Equilibria and Kinetics for Propylene and Propane over 13X and 4A Zeolite Pellets. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 2051-2057	3.9	120
131	Adsorption and Diffusion in Bidisperse Pore Structures. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 4023-4031	3.9	14

130	Methodology of gas adsorption process design. Separation of propane/propylene and n/iso-paraffins mixtures. <i>Studies in Surface Science and Catalysis</i> , 1999 , 120, 371-394	1.8	1
129	Fixed-bed adsorption of two linearly adsorbed components in presence of an inert. <i>Chemical Engineering Science</i> , 1998 , 53, 3513-3520	4.4	5
128	Separation of enantiomers of a chiral epoxide by simulated moving bed chromatography. <i>Journal of Chromatography A</i> , 1998 , 827, 215-233	4.5	58
127	Demethoxylation of lignin-model compounds with enzyme extracts from Gloeophilum trabeum. <i>Process Biochemistry</i> , 1998 , 33, 657-661	4.8	17
126	Adsorption of phenylalanine onto polymeric resins: equilibrium, kinetics and operation of a parametric pumping unit. <i>Separation and Purification Technology</i> , 1998 , 13, 25-35	8.3	34
125	Uptake of copper and cobalt in a complexing resin: shrinking-core model with two reaction fronts. <i>Separation and Purification Technology</i> , 1998 , 13, 37-46	8.3	18
124	Separation of n/iso-paraffins mixtures by pressure swing adsorption. <i>Separation and Purification Technology</i> , 1998 , 13, 195-208	8.3	21
123	Modeling strategies for enantiomers separation by SMB chromatography. AICHE Journal, 1998, 44, 561	-5569	158
122	Mass transfer mechanisms in Hyper D media for chromatographic protein separation. <i>Biochemical Engineering Journal</i> , 1998 , 1, 11-23	4.2	48
121	Dynamic behaviour of a fixed-bed biofilm reactor: analysis of the role of the intraparticle convective flow under biofilm growth. <i>Biochemical Engineering Journal</i> , 1998 , 2, 1-9	4.2	8
120	Linear driving force approximation in cyclic adsorption processes: Simple results from system dynamics based on frequency response analysis. <i>Chemical Engineering and Processing: Process Intensification</i> , 1998 , 37, 489-502	3.7	18
119	Sorption of Metals by an Amidoxime Chelating Resin. Part I: Equilibrium. <i>Separation Science and Technology</i> , 1998 , 33, 1585-1604	2.5	16
118	Measurements of Effective Self-diffusion Coefficients in a Gel-Type Cation Exchanger by the Zero-Length-Column Method. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2020-2028	3.9	33
117	Sorption and Diffusion of n-Pentane in Pellets of 5A Zeolite. <i>Industrial & amp; Engineering Chemistry Research</i> , 1997 , 36, 493-500	3.9	63
116	Fixed-Bed Adsorption of n-Pentane/Isopentane Mixtures in Pellets of 5A Zeolite. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 3769-3777	3.9	35
115	Denitrification kinetics in a rotating disk biofilm reactor. Chemical Engineering Journal, 1997, 65, 227-23	3 5 14.7	15
114	Charge dynamics of a methane adsorption storage system: Intraparticle diffusional effects. <i>Adsorption</i> , 1997 , 3, 117-125	2.6	37
113	Permeable packings and perfusion chromatography in protein separation. <i>Biomedical Applications</i> , 1997 , 699, 47-61		86

112	On the numerical solution of partial differential equations with two spatial scales. <i>Computers and Chemical Engineering</i> , 1997 , 21, 387-397	4	8
111	Breakthrough curves for fixed-bed adsorbers: Quasi-lognormal distribution approximation. <i>AICHE Journal</i> , 1997 , 43, 979-985	3.6	25
110	Equilibrium and kinetics ofnIhexane sorption in pellets of 5A zeolite. AICHE Journal, 1997, 43, 2524-253	43.6	50
109	Dynamics of natural gas adsorption storage systems employing activated carbon. <i>Carbon</i> , 1997 , 35, 125	9±10247(0 94
108	Separation of 1,1?-bi-2-naphthol enantiomers by continuous chromatography in simulated moving bed. <i>Chemical Engineering Science</i> , 1997 , 52, 245-257	4.4	95
107	Modeling, simulation and operation of a simulated moving bed for continuous chromatographic separation of 1,1?-bi-2-naphthol enantiomers. <i>Journal of Chromatography A</i> , 1997 , 769, 25-35	4.5	77
106	Kinetics of Vanillin Production from Kraft Lignin Oxidation. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 28-36	3.9	123
105	Measurement of the Effective Diffusivity in Porous Media by the Diffusion Cell Method. <i>Catalysis Reviews - Science and Engineering</i> , 1996 , 38, 189-247	12.6	33
104	Heterogeneous Models of Tubular Reactors Packed with Ion-Exchange Resins: Simulation of the MTBE Synthesis. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 3827-3841	3.9	9
103	Intraparticle Convection in Chromatographic Permeable Packings. ACS Symposium Series, 1996, 157-172	. 0.4	2
102	MEASUREMENTS OF EFFECTIVE DIFFUSIVITY IN LARGE-PORE PERMEABLE PELLETS WITH VARIOUS GEOMETRIES USING THE CHROMATOGRAPHIC METHOD. <i>Chemical Engineering Communications</i> , 1996 , 146, 201-229	2.2	2
101	Modeling of biodegradation/adsorption combined processes in fixed-bed biofilm reactors: Effects of the intraparticle convective flow. <i>Chemical Engineering Science</i> , 1996 , 51, 4595-4604	4.4	13
100	Kinetics of vanillin oxidation. Chemical Engineering and Technology, 1996, 19, 127-136	2	41
99	Effect of intraparticle convection on the transient behavior of fixed-bed reactors: Finite differences and collocation methods for solving unidimensional models. <i>Computers and Chemical Engineering</i> , 1996 , 20, 1201-1225	4	6
98	Extension of the linear driving force-dusty gas model approximation to include surface or micropore diffusion. <i>Separation and Purification Technology</i> , 1996 , 10, 141-148		5
97	Analysis of ZLC technique for diffusivity measurements in bidisperse porous adsorbent pellets. <i>Separation and Purification Technology</i> , 1996 , 10, 207-224		32
96	Sorption Processes 1996 , 216-241		
95	Modeling and Operation of a Simulated Moving Bed for the Separation of Optical Isomers. <i>Kluwer International Series in Engineering and Computer Science</i> , 1996 , 765-772		Ο

94	A simulation model of a high-capacity methane adsorptive storage system. <i>Adsorption</i> , 1995 , 1, 17-27	2.6	48
93	Adsorptive separation by thermal parametric pumping part I: Modeling and simulation. <i>Adsorption</i> , 1995 , 1, 213-231	2.6	15
92	Adsorptive separation by thermal parametric pumping part II: Experimental study of the purification of aqueous phenolic solutions at pilot scale. <i>Adsorption</i> , 1995 , 1, 233-252	2.6	17
91	Bioseparations with permeable particles. <i>Biomedical Applications</i> , 1995 , 664, 233-40		53
90	Determination of effective diffusivities and convective coefficients of pure gases in single pellets. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1995 , 57, 285-294		
89	Adsorptive processes using large-porelimaterials: analysis of a criterion for equivalence of diffusionBonvection, apparentIdiffusion and ExtendedIlinear driving force models. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1995 , 60, 81-87		2
88	Catalytic processes using Large-porelimaterials: effects of the flow rate and operating temperature on the conversion in a plug-flow reactor for irreversible first-order reactions. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1995 , 60, 111-116		2
87	Separation of enantiomers of 1a,2,7,7a-tetrahydro-3-methoxynaphtha-(2,3b)-oxirane by liquid chromatography: laboratory-scale elution chromatography and modelling of simulated moving bed. <i>Journal of Chromatography A</i> , 1995 , 702, 223-231	4.5	25
86	Simulation of tubular reactors packed with large-pore catalysts with spherical geometry. <i>Computers and Chemical Engineering</i> , 1995 , 19, 351-356	4	1
85	Modeling and Simulation of Carbon Mask Adsorptive Reactors. <i>Industrial & Discrete Ingineering Chemistry Research</i> , 1995 , 34, 2762-2768	3.9	12
84	Flow Field and Non-Isothermal Effects on Diffusion, Convection, and Reaction in Permeable Catalysts. <i>Industrial & Diffusion Chemistry Research</i> , 1995 , 34, 148-157	3.9	14
83	Chemical and biological oxidation of Pinus pinaster lignin of the production of vanillin. <i>Journal of Chemical Technology and Biotechnology</i> , 1995 , 64, 225-234	3.5	28
82	Linear driving force approximation for isothermal non-isobaric diffusion/convection with binary Langmuir adsorption. <i>Separation and Purification Technology</i> , 1995 , 9, 259-270		14
81	Explicit calculation of multicomponent equilibria for ideal adsorbed solutions. <i>AICHE Journal</i> , 1994 , 40, 182-186	3.6	19
80	Pressure swing adsorption reactors: Simulation of three-step one-bed process. <i>AICHE Journal</i> , 1994 , 40, 1118-1137	3.6	33
79	Tracer experiments in fixed beds: effects of flow maldistribution on the estimation of transport kinetic parameters. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 53, 193-199		2
78	Modelling of K-Na exchange in fixed beds with highly concentrated feed. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 54, 17-22		
77	Effectiveness of bidisperse catalysts with convective flow in the macropores. <i>The Chemical Engineering Journal and the Biochemical Engineering Journal</i> , 1994 , 55, 81-86		1

76	Linear driving force approximation for diffusion in spherical adsorbents with binary non-linear adsorption. <i>Separation and Purification Technology</i> , 1994 , 8, 229-236		9
75	MTBE synthesis catalysed by acid ion exchange resins: Kinetic studies and modeling of multiphase batch reactors. <i>Chemical Engineering Science</i> , 1994 , 49, 4589-4604	4.4	25
74	Determination of Intraparticle Diffusivities Using a Single Pellet String Fixed Bed and a Shallow-Bed Diffusion Cell. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 1380-1390	3.9	5
73	Co-Ion Behavior at High Concentration Cationic Ion Exchange. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 2789-2794	3.9	21
72	Intraparticle Diffusion and Convection in Adsorption Processes. <i>Studies in Surface Science and Catalysis</i> , 1993 , 537-544	1.8	1
71	Intensification of sorption processes using "large-pore" materials. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 230-235	3.9	4
70	Enhancement of film mass transfer by forced convective flow perpendicular to a heterogeneous surface. <i>Industrial & Description of the Surface and Sur</i>	3.9	4
69	Pressure swing adsorption processes: intraparticle diffusion/convection models. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 2740-2751	3.9	16
68	Diffusion, convection, and reaction in catalyst particles: analogy between slab and sphere geometries. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 1839-1852	3.9	20
67	Determination of Adsorption Equilibria and Bidisperse Transport Properties of Adsorbents using a Shallow Bed-Diffusion Cell. <i>Studies in Surface Science and Catalysis</i> , 1993 , 80, 631-637	1.8	
66	Diffusion and catalytic zero-order reaction in a macroreticular ion exchange resin. <i>Chemical Engineering Science</i> , 1993 , 48, 2927-2950	4.4	12
65	Pressurization and blowdown of adsorption beds I. Effect of the momentum and equilibrium relations on isothermal operation. <i>Chemical Engineering Science</i> , 1993 , 48, 1699-1707	4.4	25
64	Diffusion and convection in chromatographic processes using permeable supports with a bidisperse pore structure. <i>Chemical Engineering Science</i> , 1993 , 48, 3927-3935	4.4	80
63	Simulation of a three-step one-column pressure swing adsorption process. <i>AICHE Journal</i> , 1993 , 39, 14	83 3 .1649	619
62	Modelling of solid-liquid adsorption: effects of adsorbent heterogeneity. <i>The Chemical Engineering Journal</i> , 1993 , 51, 159-166		2
61	Peak resolution in linear chromatography. <i>Journal of Chromatography A</i> , 1993 , 653, 189-198	4.5	75
60	Can steady-state momentum equations be used in modelling pressurization of adsorption beds?. <i>Separation and Purification Technology</i> , 1993 , 7, 167-174		45
59	Adsorptive Separations and Adsorptive Reactors 1993 , 327-344		1

58	Diffusion and convection in permeable particles: Analogy between slab and sphere geometries. <i>Separation and Purification Technology</i> , 1992 , 2, 208-211		9
57	Saturation and regeneration of ion exchangers with volume changes. <i>Industrial & amp; Engineering Chemistry Research</i> , 1992 , 31, 2564-2572	3.9	6
56	Intraparticle Diffusion/Convection Models for Pressurization and Blowdown of Adsorption Beds with Langmuir Isotherm. <i>Separation Science and Technology</i> , 1992 , 27, 1857-1874	2.5	4
55	Dynamic behavior of fixed-bed reactors with targe-porestatalysts: A bidimensional heterogeneous diffusion/convection model. <i>Computers and Chemical Engineering</i> , 1992 , 16, 721-751	4	8
54	Solution of partial differential equations systems by the moving finite element method. <i>Computers and Chemical Engineering</i> , 1992 , 16, 583-592	4	20
53	Dynamics of pressurization and blowdown of an adiabatic bed: III. <i>Separation and Purification Technology</i> , 1992 , 6, 15-23		12
52	Importance of intraparticle convection in the performance of chromatographic processes. <i>Journal of Chromatography A</i> , 1992 , 590, 93-100	4.5	93
51	Dynamics of pressurization and blowdown of an adiabatic adsorption bed: 4. Intraparticle diffusion/convection models. <i>Separation and Purification Technology</i> , 1992 , 6, 89-100		8
50	Biofilm reactors: an experimental and modeling study of wastewater denitrification in fluidized-bed reactors of activated carbon particles. <i>Biotechnology and Bioengineering</i> , 1992 , 40, 625-33	4.9	45
49	Influence of adsorption-desorption kinetics on the performance of chromatographic processes using large-pore supports. <i>Chemical Engineering Science</i> , 1992 , 47, 4405-4413	4.4	33
48	Modelling of the methane steam reforming reactor with large-pore catalysts. <i>Chemical Engineering Science</i> , 1992 , 47, 2909-2914	4.4	23
47	Single-pellet cell for the measurement of intraparticle diffusion and convection. <i>AICHE Journal</i> , 1992 , 38, 416-424	3.6	6
46	Intraparticle convection effect on pressurization and blowdown of adsorbers. <i>AICHE Journal</i> , 1992 , 38, 857-867	3.6	17
45	Modeling Deactivation of Large-Pore Catalysts. Studies in Surface Science and Catalysis, 1991, 383-390	1.8	
44	Modeling and simulation of the impregnation step of the merox process. <i>Computers and Chemical Engineering</i> , 1991 , 15, 287-296	4	4
43	The moving finite element method with polynomial approximation of any degree. <i>Computers and Chemical Engineering</i> , 1991 , 15, 25-33	4	33
42	Simulated pressurization of adsorption beds. Separation and Purification Technology, 1991, 5, 115-124		20
41	Two solution methods for hyperbolic systems of partial differential equations in chemical engineering. <i>Chemical Engineering Science</i> , 1991 , 46, 3259-3267	4.4	14

(1986-1991)

40	Residence time distribution of inert and linearly adsorbed species in a fixed bed containing Large-pore Laupports: applications in separation engineering. <i>Chemical Engineering Science</i> , 1991 , 46, 2765-2773	4.4	102
39	INTRAPARTICLE CONVECTION REVISITED. Chemical Engineering Communications, 1991, 107, 21-33	2.2	13
38	Theory of Linear and Nonlinear Chromatography 1991 , 25-52		2
37	Adsorptive parametric pumping for the purification of phenolic effluents. <i>Separation and Purification Technology</i> , 1991 , 1, 99-107		10
36	Dynamics of adsorptive reactors I Instantaneous nonlinear adsorption and finite zero order irreversible reaction. <i>Canadian Journal of Chemical Engineering</i> , 1990 , 68, 127-138	2.3	9
35	Fixed-bed reactor for gasoline sweetening: Kinetics of mercaptan oxidation and simulation of the Merox reactor unit. <i>Chemical Engineering Science</i> , 1990 , 45, 679-685	4.4	9
34	Effect of intraparticle convection on the steady-state behavior of fixed-bed catalytic reactors. <i>Chemical Engineering Science</i> , 1990 , 45, 2653-2660	4.4	21
33	Absorptive Reactors 1989, 223-238		2
32	Numerical Methods for the Solution of Adsorption Models 1989, 257-265		
31	Studies on the Merox process: kinetics of N-butyl mercaptan oxidation. <i>Chemical Engineering Science</i> , 1989 , 44, 1245-1253	4.4	26
30	Fixed-bed adsorption of gases: Effect of velocity variations on transition types. <i>AICHE Journal</i> , 1988 , 34, 996-1005	3.6	32
29	Consecutive reactions in fluidized-bed biological reactors: Modeling and experimental study of wastewater denitrification. <i>Chemical Engineering Science</i> , 1988 , 43, 2715-2728	4.4	26
28	Recovery of copper, zinc and lead from liquid streams by chelating ion exchange resins. <i>Chemical Engineering Science</i> , 1988 , 43, 1115-1123	4.4	14
27	On the optimization of tubular fixed-bed catalytic reactors. <i>The Chemical Engineering Journal</i> , 1988 , 38, 9-16		3
26	Mass Transfer and Reaction in Fixed-Bed Heterogeneous Systems: Application to Sorption Operations and Catalytic Reactors 1988 , 215-236		1
25	Studies on the impregnation step of the Merox process. <i>Chemical Engineering Science</i> , 1987 , 42, 2291-2	299	26
24	Heat transfer parameters in fixed bed exchangers. The Chemical Engineering Journal, 1987, 34, 89-97		10
23	Fixed Bed Processes:A Strategy for Modelling 1986 , 271-287		3

22	Transport Processes in Catalyst Pellets 1986 , 1-34		1
21	Intraparticle diffusion of phenol in macroreticular adsorbents: Modelling and experimental study of batch and CSTR adsorbers. <i>Chemical Engineering Science</i> , 1985 , 40, 983-993	4.4	54
20	Design of cyclic fixed-bed adsorption processes. Part I: Phenol adsorption on polymeric adsorbents. <i>AICHE Journal</i> , 1985 , 31, 1645-1654	3.6	65
19	Design of cyclic fixed-bed adsorption processes. Part II: Regeneration and cyclic operation. <i>AICHE Journal</i> , 1985 , 31, 1655-1665	3.6	13
18	INTRAPARTICLE CONVECTION, DIFFUSION AND ZERO ORDER REACTION IN POROUS CATALYSTS. <i>Chemical Engineering Communications</i> , 1984 , 27, 327-337	2.2	26
17	Modelling of biofilm reactors. <i>The Chemical Engineering Journal</i> , 1983 , 27, B39-B48		24
16	Propagation of concentration waves in fixed-bed adsorptive reactors. <i>The Chemical Engineering Journal</i> , 1983 , 27, 135-148		21
15	Removal of Phenol from Wastewater by Recuperative Mode Parametric Pumping. <i>Studies in Environmental Science</i> , 1982 , 19, 169-178		1
14	Adsorption of phenol on adsorbent resins and activated carbon: Equilibrium and kinetic studies in batch and open systems. <i>Studies in Surface Science and Catalysis</i> , 1982 , 10, 125-131	1.8	3
	Purification of phenolic wastewater by parametric pumping: Nonmixed dead volume equilibrium		
13	model. <i>AICHE Journal</i> , 1982 , 28, 73-85	3.6	18
13		3.6	126
	model. AICHE Journal, 1982, 28, 73-85 Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design.		
12	model. AICHE Journal, 1982, 28, 73-85 Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AICHE Journal, 1982, 28, 541-546		126
12	model. AICHE Journal, 1982, 28, 73-85 Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AICHE Journal, 1982, 28, 541-546 Modeling of Percolation Processes 1981, 31-81		126 15
12 11 10	model. AICHE Journal, 1982, 28, 73-85 Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AICHE Journal, 1982, 28, 541-546 Modeling of Percolation Processes 1981, 31-81 Theory of Residence Time Distributions 1981, 225-284	3.6	126 15
12 11 10	Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AICHE Journal, 1982, 28, 541-546 Modeling of Percolation Processes 1981, 31-81 Theory of Residence Time Distributions 1981, 225-284 Staged approach of percolation processes. AICHE Journal, 1979, 25, 416-423 Influence d'une isotherme non-linàire sur l'adsorption-d'orption en reacteurs parfaitement agits ouverts isol'ou en sièe. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1975,	3.6	126 15 1
12 11 10 9 8	Intraparticle-forced convection effect in catalyst diffusivity measurements and reactor design. AICHE Journal, 1982, 28, 541-546 Modeling of Percolation Processes 1981, 31-81 Theory of Residence Time Distributions 1981, 225-284 Staged approach of percolation processes. AICHE Journal, 1979, 25, 416-423 Influence d'une isotherme non-linàire sur l'adsorption-d'aorption en reacteurs parfaitement agit's ouverts isol'ou en stie. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1975, 72, 785-792 Cycles de sorption-d'aorption en racteur agit'isol'et en cascades otherme de sorption	3.6	126 15 1 15 2

LIST OF PUBLICATIONS

4 Modeling and Simulation in SMB for Chiral Purification219-251

3	Methane/nitrogen separation by SMB using \$\${text{UiO - 66(Zr)}}_{text{(COOH)}}_{{2}}\$\$. Brazilian Journal of Chemical Engineering,1	1.7	Ο
2	Additive manufacturing for adsorption-related applications - a review. <i>Journal of Advanced Manufacturing and Processing</i> ,	2.7	3
1	Separation of Branched Alkanes Feeds by a Synergistic Action of Zeolite and Metal-Organic Framework. <i>Advanced Science</i> ,2201494	13.6	6