
Ivica Blažević

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2737306/publications.pdf Version: 2024-02-01

Ινις Α Βι ΑΔ3/ ενμάτ

#	Article	IF	CITATIONS
1	Rocket (Eruca vesicaria (L.) Cav.) vs. Copper: The Dose Makes the Poison?. Molecules, 2022, 27, 711.	1.7	2
2	Impacts of elicitors on metabolite production and on antioxidantÂpotential and tyrosinase inhibition in watercress microshoot cultures. Applied Microbiology and Biotechnology, 2022, 106, 619-633.	1.7	9
3	Glucosinolates of Lepidium graminifolium L. (Brassicaceae) from Croatia. Natural Product Research, 2021, 35, 494-498.	1.0	3
4	Precursor-Boosted Production of Metabolites in Nasturtium officinale Microshoots Grown in Plantform Bioreactors, and Antioxidant and Antimicrobial Activities of Biomass Extracts. Molecules, 2021, 26, 4660.	1.7	8
5	Lepidium graminifolium L.: Glucosinolate Profile and Antiproliferative Potential of Volatile Isolates. Molecules, 2021, 26, 5183.	1.7	3
6	Sinigrin Encapsulation in Liposomes: Influence on <i>In Vitro</i> Digestion and Antioxidant Potential. Polish Journal of Food and Nutrition Sciences, 2021, , 441-449.	0.6	2
7	Comparison of gastrointestinal stability of isothiocyanates from Tropaeolum Majus L. Altum using in vitro and ex vivo digestion methods. Croatian Journal of Food Science and Technology, 2021, 13, 160-166.	0.5	2
8	Investigation of the glucosinolates in Hesperis matronalis L. and Hesperis laciniata All.: Unveiling 4′-O-β-d-apiofuranosylglucomatronalin. Carbohydrate Research, 2020, 488, 107898.	1.1	11
9	Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry, 2020, 169, 112100.	1.4	315
10	The Garden Candytuft (Iberis umbellata L.): At the Crossroad of Copper Accumulation and Glucosinolates. Processes, 2020, 8, 1116.	1.3	4
11	Phytochemical and Biological Activity Studies on Nasturtium officinale (Watercress) Microshoot Cultures Grown in RITA® Temporary Immersion Systems. Molecules, 2020, 25, 5257.	1.7	12
12	Biological Effects of Glucosinolate Degradation Products from Horseradish: A Horse that Wins the Race. Biomolecules, 2020, 10, 343.	1.8	25
13	Microwave-Assisted versus Conventional Isolation of Glucosinolate Degradation Products from Lunaria annua L. and Their Cytotoxic Activity. Biomolecules, 2020, 10, 215.	1.8	14
14	Stability and bioaccessibility during ex vivo digestion of glucoraphenin and glucoraphasatin from Matthiola incana (L.) R. Br Journal of Food Composition and Analysis, 2020, 90, 103483.	1.9	6
15	Terpenes, Phenylpropanoids, Sulfur and Other Essential Oil Constituents as Inhibitors of Cholinesterases. Current Medicinal Chemistry, 2020, 27, 4297-4343.	1.2	44
16	Bunias erucago L.: Glucosinolate Profile and In Vitro Biological Potential. Molecules, 2019, 24, 741.	1.7	19
17	Antimicrobial and Cytotoxic Activities of Lepidium latifolium L. Hydrodistillate, Extract and Its Major Sulfur Volatile Allyl Isothiocyanate. Chemistry and Biodiversity, 2019, 16, e1800661.	1.0	24
18	lsothiocyanates: cholinesterase inhibiting, antioxidant, and anti-inflammatory activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 577-582.	2.5	60

Ivica Blažević

#	Article	IF	CITATIONS
19	LC–MS profiling of glucosinolates in the seeds of <i>Brassica elongata</i> Ehrh., and of the two stenoendemic <i>B. botteri</i> Vis and <i>B. cazzae</i> Ginzb. & Teyber. Natural Product Research, 2017, 31, 58-62.	1.0	9
20	Glucosinolates: Novel Sources and Biological Potential. Reference Series in Phytochemistry, 2017, , 3-60.	0.2	10
21	Sea fennel (Crithmum maritimum L.): phytochemical profile, antioxidative, cholinesterase inhibitory and vasodilatory activity. Journal of Food Science and Technology, 2016, 53, 3104-3112.	1.4	45
22	Glucosinolates: Novel Sources and Biological Potential. , 2015, , 1-58.		3
23	Glucosinolate Profile of Croatian Stenoendemic Plant Fibigia triquetra (DC.) Boiss. ex Prantl Croatica Chemica Acta, 2015, 88, 307-314.	0.1	5
24	Long-chain Glucosinolates from <i>Arabis turrita</i> : Enzymatic and Non-enzymatic Degradations. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	6
25	Long-chain Glucosinolates from Arabis turrita: Enzymatic and Non-enzymatic Degradations. Natural Product Communications, 2015, 10, 1043-6.	0.2	3
26	Glucosinolates of Lunaria annua: thermal, enzymatic, and chemical degradation. Chemistry of Natural Compounds, 2014, 49, 1154-1157.	0.2	7
27	Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chemistry of Natural Compounds, 2013, 49, 374-378.	0.2	10
28	Glucosinolates in Two Endemic Plants of the <i>Aurinia</i> Genus and their Chemotaxonomic Significance. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	5
29	Antioxidative/acetylcholinesterase inhibitory activity of some Asteraceae plants. Natural Product Communications, 2013, 8, 471-4.	0.2	10
30	Glucosinolates in two endemic plants of the Aurinia genus and their chemotaxonomic significance. Natural Product Communications, 2013, 8, 1463-6.	0.2	7
31	Antiphytoviral Activity of Sesquiterpene-Rich Essential Oils from Four Croatian Teucrium Species. Molecules, 2011, 16, 8119-8129.	1.7	52
32	Phytochemical Analysis and Antimicrobial Activity of <i>Cardaria draba</i> (L.) <scp>Desv</scp> . Volatiles. Chemistry and Biodiversity, 2011, 8, 1170-1181.	1.0	34
33	Glucosinolate Distribution in Aerial Parts of <i>Degenia velebitica</i> . Chemistry and Biodiversity, 2011, 8, 2090-2096.	1.0	9
34	Glucosinolate Profiling and Antimicrobial Screening of <i>Aurinia leucadea</i> (Brassicaceae). Chemistry and Biodiversity, 2011, 8, 2310-2321.	1.0	21
35	Hedge Mustard (<i>Sisymbrium officinale</i>): Chemical Diversity of Volatiles and Their Antimicrobial Activity. Chemistry and Biodiversity, 2010, 7, 2023-2034.	1.0	37
36	Chemical Composition and Antimicrobial Activity of Volatiles from <i>Degenia velebitica</i> , a European Stenoendemic Plant of the Brassicaceae Family. Chemistry and Biodiversity, 2010, 7, 2755-2765.	1.0	20

Ινιςα Βιαά¾ενιä‡

#	Article	IF	CITATIONS
37	Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chemistry, 2010, 121, 1020-1028.	4.2	43
38	Glucosinolate degradation products and other bound and free volatiles in the leaves and roots of radish (Raphanus sativus L.). Food Chemistry, 2009, 113, 96-102.	4.2	115
39	Free and bound volatiles of rocket (<i>Eruca sativa </i> Mill.). Flavour and Fragrance Journal, 2008, 23, 278-285.	1.2	43
40	Hydrodistillation–adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials. Talanta, 2008, 76, 885-891.	2.9	15
41	Comparative Study on the Antioxidant and Biological Activities of Carvacrol, Thymol, and Eugenol Derivatives. Journal of Agricultural and Food Chemistry, 2008, 56, 3989-3996.	2.4	233
42	EVALUATION OF THE ANTIOXIDANT ACTIVITY OF ESSENTIAL OILS FROM CAPER (CAPPARIS SPINOSA) AND SEA FENNEL (CRITHMUM MARITIMUM) BY DIFFERENT METHODS. Journal of Food Biochemistry, 0, 34, 286-302.	1.2	43
43	Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. European Food Research and Technology, 0, , 1.	1.6	2