BoÅ;tjan Genorio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736850/publications.pdf

Version: 2024-02-01

44 3,734 25
papers citations h-index

49 49 49 8236
all docs docs citations times ranked citing authors

45

g-index

#	Article	IF	CITATIONS
1	The efficiency of chitosan-graphene oxide composite membranes modified with genipin in fuel cell application. E3S Web of Conferences, 2022, 334, 04002.	0.2	2
2	Ag-MnxOy on Graphene Oxide Derivatives as Oxygen Reduction Reaction Catalyst in Alkaline Direct Ethanol Fuel Cells. Catalysts, 2022, 12, 780.	1.6	14
3	Highly Exfoliated N-Doped Reduced Graphene Oxide Derivatives Synthesis and Application. ECS Meeting Abstracts, 2022, MA2022-01, 656-656.	0.0	O
4	A New Cell Configuration for a More Precise Electrochemical Evaluation of an Artificial Solidâ€Electrolyte Interphase. Batteries and Supercaps, 2021, 4, 623-631.	2.4	1
5	Efficient Chitosan/Nitrogen-Doped Reduced Graphene Oxide Composite Membranes for Direct Alkaline Ethanol Fuel Cells. International Journal of Molecular Sciences, 2021, 22, 1740.	1.8	21
6	A Novel Reduced Graphene Oxide Modified Carbon Paste Electrode for Potentiometric Determination of Trihexyphenidyl Hydrochloride in Pharmaceutical and Biological Matrices. Sensors, 2021, 21, 2955.	2.1	14
7	Understanding the Oxygen Reduction Reaction Activity of Quasi-1D and 2D N-Doped Heat-Treated Graphene Oxide Catalysts with Inherent Metal Impurities. ACS Applied Energy Materials, 2021, 4, 3593-3603.	2.5	21
8	Enhancing Iridium Nanoparticles' Oxygen Evolution Reaction Activity and Stability by Adjusting the Coverage of Titanium Oxynitride Flakes on Reduced Graphene Oxide Nanoribbons' Support. Advanced Materials Interfaces, 2021, 8, 2100900.	1.9	10
9	Toward the Continuous Production of Multigram Quantities of Highly Uniform Supported Metallic Nanoparticles and Their Application for Synthesis of Superior Intermetallic Pt-Alloy ORR Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 13819-13829.	2.5	21
10	Highly Sensitive Amperometric Detection of Hydrogen Peroxide in Saliva Based on N-Doped Graphene Nanoribbons and MnO2 Modified Carbon Paste Electrodes. Sensors, 2021, 21, 8301.	2.1	6
11	Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method. Electrocatalysis, 2020, 11, 203-214.	1.5	18
12	Development of the New Fluoride Ion-Selective Electrode Modified with FexOy Nanoparticles. Molecules, 2020, 25, 5213.	1.7	16
13	Tuning the Selectivity and Activity of Electrochemical Interfaces with Defective Graphene Oxide and Reduced Graphene Oxide. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34517-34525.	4.0	29
14	Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nature Catalysis, 2018, 1, 255-262.	16.1	128
15	Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries. Scientific Reports, 2018, 8, 5819.	1.6	51
16	Graphene nanoplatelets as an anticorrosion additive for solar absorber coatings. Solar Energy Materials and Solar Cells, 2018, 176, 19-29.	3.0	68
17	Design principles for hydrogen evolution reaction catalyst materials. Nano Energy, 2016, 29, 29-36.	8.2	629
18	"Rocking-Chair―Type Metal Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 30853-30862.	4.0	86

#	Article	IF	CITATIONS
19	Tuning the Reversibility of Mg Anodes via Controlled Surface Passivation by H ₂ O/Cl [–] in Organic Electrolytes. Chemistry of Materials, 2016, 28, 8268-8277.	3.2	147
20	Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3551-3556.	4.0	114
21	Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments. Journal of Physical Chemistry C, 2016, 120, 15909-15914.	1.5	25
22	Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nature Materials, 2016, 15, 197-203.	13.3	825
23	The Synthesis of Diquinone and Dihydroquinone Derivatives of Calix[4]arene and Electrochemical Characterization on Au(111) surface. Acta Chimica Slovenica, 2016, 63, 496-508.	0.2	5
24	Anthraquinoneâ€Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem, 2015, 8, 4128-4132.	3.6	137
25	Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media. ACS Catalysis, 2015, 5, 6600-6607.	5.5	98
26	Fluorinated Reduced Graphene Oxide as an Interlayer in Li–S Batteries. Chemistry of Materials, 2015, 27, 7070-7081.	3.2	124
27	Synthesis and Electrochemical Characterization of Graphene Nanoribbon stacks Functionalized with Buckyballs. Acta Chimica Slovenica, 2015, 62, 895-901.	0.2	1
28	Back Cover: Effective Separation of Lithium Anode and Sulfur Cathode in Lithium-Sulfur Batteries (ChemElectroChem 6/2014). ChemElectroChem, 2014, 1, 1086-1086.	1.7	0
29	Effective Separation of Lithium Anode and Sulfur Cathode in Lithium–Sulfur Batteries. ChemElectroChem, 2014, 1, 1040-1045.	1.7	64
30	Radio-Frequency-Transparent, Electrically Conductive Graphene Nanoribbon Thin Films as Deicing Heating Layers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 298-304.	4.0	49
31	Redoxâ€Active Functionalized Graphene Nanoribbons as Electrode Material for Liâ€lon Batteries. ChemElectroChem, 2014, 1, 2131-2137.	1.7	14
32	Functionalization of graphene nanoribbons. Journal Physics D: Applied Physics, 2014, 47, 094012.	1.3	26
33	Permittivity of Dielectric Composite Materials Comprising Graphene Nanoribbons. The Effect of Nanostructure. ACS Applied Materials & Samp; Interfaces, 2013, 5, 7567-7573.	4.0	47
34	Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances. ACS Nano, 2013, 7, 10380-10386.	7.3	124
35	Functionalized Graphene Nanoribbons via Anionic Polymerization Initiated by Alkali Metal-Intercalated Carbon Nanotubes. ACS Nano, 2013, 7, 2669-2675.	7. 3	35
36	Graphene Nanoribbons as an Advanced Precursor for Making Carbon Fiber. ACS Nano, 2013, 7, 1628-1637.	7.3	117

#	Article	lF	CITATION
37	Synthesis of Dispersible Ferromagnetic Graphene Nanoribbon Stacks with Enhanced Electrical Percolation Properties in a Magnetic Field. ACS Nano, 2012, 6, 10396-10404.	7.3	21
38	<i>In Situ</i> Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon Stacks. ACS Nano, 2012, 6, 4231-4240.	7.3	106
39	Electrochemically stabilised quinone based electrode composites for Li-ion batteries. Journal of Power Sources, 2012, 199, 308-314.	4.0	67
40	Tailoring the Selectivity and Stability of Chemically Modified Platinum Nanocatalysts To Design Highly Durable Anodes for PEM Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 5468-5472.	7.2	70
41	Electroactive Organic Molecules Immobilized onto Solid Nanoparticles as a Cathode Material for Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2010, 49, 7222-7224.	7.2	163
42	Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4] arene molecules. Nature Materials, 2010, 9, 998-1003.	13.3	151
43	Synthesis and Self-Assembly of Thio Derivatives of Calix[4]arene on Noble Metal Surfaces. Langmuir, 2008, 24, 11523-11532.	1.6	27
44	Cone and 1,3-alternate conformers of 1,3-bis(ethoxycarbonylmethoxy)-2,4-dihydroxycalix[4]arene and 1,2,3,4-tetrakis(ethoxycarbonylmethoxy)calix[4]arene. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o221-o224.	0.4	2