Véronique Riffault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273622/publications.pdf

Version: 2024-02-01

66 papers

1,633 citations

304602 22 h-index 36 g-index

89 all docs 89 docs citations

89 times ranked 2240 citing authors

#	Article	IF	CITATIONS
1	Using Real Time Measurements to Derive the Indoor and Outdoor Contributions of Submicron Particulate Species and Trace Gases. Toxics, 2022, 10, 161.	1.6	4
2	Chemically speciated mass size distribution, particle density, shape and origin of non-refractory PM ₁ measured at a rural background site in central Europe. Atmospheric Chemistry and Physics, 2022, 22, 5829-5858.	1.9	7
3	European aerosol phenomenology â^ 8: Harmonised source apportionment of organic aerosol using 22 Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.	4.8	41
4	Comparison of the chemical composition of aerosols from heated tobacco products, electronic cigarettes and tobacco cigarettes and their toxic impacts on the human bronchial epithelial BEAS-2B cells. Journal of Hazardous Materials, 2021, 401, 123417.	6.5	73
5	Characterization and source apportionment of single particles from metalworking activities. Environmental Pollution, 2021, 270, 116078.	3.7	7
6	Near real-time PM1 chemical composition measurements at a French urban background and coastal site under industrial influence over more than a year: Temporal variability and assessment of sulfur-containing emissions. Atmospheric Environment, 2021, 244, 117960.	1.9	9
7	Overview of the French Operational Network for In Situ Observation of PM Chemical Composition and Sources in Urban Environments (CARA Program). Atmosphere, 2021, 12, 207.	1.0	23
8	A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe. Atmospheric Environment: X, 2021, 10, 100108.	0.8	23
9	Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: procedures and unit-to-unit variabilities. Atmospheric Measurement Techniques, 2021, 14, 3195-3216.	1.2	22
10	Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmospheric Environment: X, 2020, 5, 100053.	0.8	41
11	Investigation of PM10, PM2.5, PM1 in an unoccupied airflow-controlled room: How reliable to neglect resuspension and assume unreactive particles?. Building and Environment, 2020, 186, 107357.	3.0	10
12	Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. Atmospheric Chemistry and Physics, 2020, 20, 409-429.	1.9	24
13	Arabitol, mannitol, and glucose as tracers of primary biogenic organic aerosol: the influence of environmental factors on ambient air concentrations and spatial distribution over France. Atmospheric Chemistry and Physics, 2019, 19, 11013-11030.	1.9	35
14	Real-time assessment of wintertime organic aerosol characteristics and sources at a suburban site in northern France. Atmospheric Environment, 2019, 203, 48-61.	1.9	11
15	Toxicological effects of ambient fine (PM2.5-0.18) and ultrafine (PM0.18) particles in healthy and diseased 3D organo-typic mucocilary-phenotype models. Environmental Research, 2019, 176, 108538.	3.7	26
16	Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmospheric Chemistry and Physics, 2019, 19, 3357-3374.	1.9	53
17	Investigation on the near-field evolution of industrial plumes from metalworking activities. Science of the Total Environment, 2019, 668, 443-456.	3.9	16
18	Characterizing the regional contribution to PM10 pollution over northern France using two complementary approaches: Chemistry transport and trajectory-based receptor models. Atmospheric Research, 2019, 223, 1-14.	1.8	13

#	Article	IF	Citations
19	Exposure to Atmospheric Ultrafine Particles Induces Severe Lung Inflammatory Response and Tissue Remodeling in Mice. International Journal of Environmental Research and Public Health, 2019, 16, 1210.	1.2	22
20	Aerosol variability induced by atmospheric dynamics in a coastal area of Senegal, North-Western Africa. Atmospheric Environment, 2019, 203, 228-241.	1.9	6
21	Classical Molecular Dynamics Study of Small-Chain Carboxylic Acid Aerosol Particles. ACS Earth and Space Chemistry, 2019, 3, 380-389.	1.2	7
22	Large-scale particulate air pollution and chemical fingerprint of volcanic sulfate aerosols from the 2014–2015 Holuhraun flood lava eruption of Bárðarbunga volcano (Iceland). Atmospheric Chemistry and Physics, 2019, 19, 14253-14287.	1.9	15
23	Characterization and variability of inorganic aerosols and their gaseous precursors at a suburban site in northern France over one year (2015–2016). Atmospheric Environment, 2019, 200, 142-157.	1.9	22
24	Fine particles sampled at an urban background site and an industrialized coastal site in Northern Franceâ€"Part 2: Comparison of offline and online analyses for carbonaceous aerosols. Aerosol Science and Technology, 2018, 52, 287-299.	1,5	9
25	Heterogeneous Interaction of Various Natural Dust Samples with Isopropyl Alcohol as a Probe VOC. Journal of Physical Chemistry A, 2018, 122, 4911-4919.	1.1	9
26	Investigation of the geographical origins of PM10 based on long, medium and short-range air mass back-trajectories impacting Northern France during the period 2009–2013. Atmospheric Environment, 2018, 193, 143-152.	1.9	14
27	Fine particles sampled at an urban background site and an industrialized coastal site in Northern France — Part 1: Seasonal variations and chemical characterization. Science of the Total Environment, 2017, 578, 203-218.	3.9	22
28	Particulate metal bioaccessibility in physiological fluids and cell culture media: Toxicological perspectives. Environmental Research, 2017, 156, 148-157.	3.7	40
29	Heterogeneous Interaction of Isoprene with Natural Gobi Dust. ACS Earth and Space Chemistry, 2017, 1, 236-243.	1.2	18
30	Isoprene Heterogeneous Uptake and Reactivity on TiO ₂ : A Kinetic and Product Study. International Journal of Chemical Kinetics, 2017, 49, 773-788.	1.0	11
31	Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory. Aeolian Research, 2017, 27, 35-45.	1.1	34
32	Genetic and epigenetic alterations in normal and sensitive COPD-diseased human bronchial epithelial cells repeatedly exposed to air pollution-derived PM 2.5. Environmental Pollution, 2017, 230, 163-177.	3.7	73
33	Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign. Atmospheric Chemistry and Physics, 2017, 17, 10291-10314.	1.9	17
34	Heterogeneous Interaction of Isopropanol with Natural Gobi Dust. Environmental Science & Emp; Technology, 2016, 50, 11714-11722.	4.6	22
35	Geochemistry of PM ₁₀ over Europe during the EMEP intensive measurement periods in summerÂ2012 and winterÂ2013. Atmospheric Chemistry and Physics, 2016, 16, 6107-6129.	1.9	54
36	Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem. Atmospheric Research, 2016, 170, 41-51.	1.8	3

#	Article	IF	Citations
37	Investigating the Heterogeneous Interaction of VOCs with Natural Atmospheric Particles: Adsorption of Limonene and Toluene on Saharan Mineral Dusts. Journal of Physical Chemistry A, 2016, 120, 1197-1212.	1.1	35
38	Ozonolysis of a Series of Methylated Alkenes: Reaction Rate Coefficients and Gasâ€Phase Products. International Journal of Chemical Kinetics, 2015, 47, 596-605.	1.0	1
39	ACTRIS ACSM intercomparison – Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments. Atmospheric Measurement Techniques, 2015, 8, 5063-5087.	1.2	104
40	ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers. Atmospheric Measurement Techniques, 2015, 8, 2555-2576.	1.2	118
41	Limonene photocatalytic oxidation at ppb levels: Assessment of gas phase reaction intermediates and secondary organic aerosol heterogeneous formation. Applied Catalysis B: Environmental, 2015, 168-169, 183-194.	10.8	21
42	Fine and Ultrafine Particles in the Vicinity of Industrial Activities: A Review. Critical Reviews in Environmental Science and Technology, 2015, 45, 2305-2356.	6.6	50
43	Reactive and Nonreactive Ozone Uptake during Aging of Oleic Acid Particles. Journal of Physical Chemistry A, 2014, 118, 9471-9481.	1.1	17
44	Experimental Study of the Reactions of Limonene with OH and OD Radicals: Kinetics and Products. Journal of Physical Chemistry A, 2014, 118, 9482-9490.	1.1	16
45	Source and behavior of isoprenoid compounds at a southern France remote site. Atmospheric Environment, 2013, 77, 272-282.	1.9	14
46	Development of a New Flow Reactor for Kinetic Studies. Application to the Ozonolysis of a Series of Alkenes. Journal of Physical Chemistry A, 2012, 116, 6169-6179.	1.1	13
47	Analysis of phthalic, isophthalic and long-chain (C4–C12) dicarboxylic acids in atmospheric aerosols by UPLC/ESI/ToF-MS. Analytical Methods, 2011, 3, 1172.	1.3	15
48	Simultaneous determination by ultra-performance liquid chromatography–atmospheric pressure chemical ionization time-of-flight mass spectrometry of nitrated and oxygenated PAHs found in air and soot particles. Analytical and Bioanalytical Chemistry, 2010, 397, 243-256.	1.9	55
49	Temperatureâ€Dependent Rate Coefficients and Theoretical Calculations for the OH+Cl 2 O Reaction. ChemPhysChem, 2010, 11, 4060-4068.	1.0	1
50	Aerosol formation yields from the reaction of catechol with ozone. Atmospheric Environment, 2009, 43, 2360-2365.	1.9	41
51	Development and validation of an ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry method to quantify benzoic acid and long-chain monocarboxylic acids (C12–C28) in atmospheric aerosols. Journal of Chromatography A, 2009, 1216, 6481-6489.	1.8	19
52	VOC in an urban and industrial harbor on the French North Sea coast during two contrasted meteorological situations. Environmental Pollution, 2009, 157, 3001-3009.	3.7	65
53	Overtone Dissociation of Peroxynitric Acid (HO ₂ NO ₂): Absorption Cross Sections and Photolysis Products. Journal of Physical Chemistry A, 2008, 112, 9296-9303.	1.1	12
54	Quantum yields for OH production in the photodissociation of HNO3 at 248 and 308 nm and H2O2 at 308 and 320 nm. Physical Chemistry Chemical Physics, 2006, 8, 1079.	1.3	13

#	Article	IF	Citations
55	Kinetic and mechanistic study of the reactions of OH with IBr and HOI. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 176, 155-161.	2.0	11
56	Thermal Decomposition of HO2NO2 (Peroxynitric Acid, PNA): Rate Coefficient and Determination of the Enthalpy of Formation ChemInform, 2005, 36, no.	0.1	0
57	Thermal Decomposition of HO2NO2(Peroxynitric Acid, PNA):Â Rate Coefficient and Determination of the Enthalpy of Formation. Journal of Physical Chemistry A, 2005, 109, 586-596.	1.1	30
58	Temperature Dependence of the Rate Constant for the Reaction $F(2P) + Cl2 \hat{a}^{\dagger}$ FCl + Cl at T = 180 \hat{a}° 360 K. Journal of Physical Chemistry A, 2004, 108, 1726-1730.	1.1	4
59	Kinetics and Mechanism of the O Atom Reaction with Dimethyl Sulfoxide. Journal of Physical Chemistry A, 2003, 107, 5404-5411.	1.1	16
60	Kinetic and mechanistic study of the X and XO (X = Cl, Br) reactions with dimethyl sulfoxide. Physical Chemistry Chemical Physics, 2003, 5, 2828-2835.	1.3	9
61	Kinetic Study of the Reactions of BrO Radicals with HO2and DO2. Journal of Physical Chemistry A, 2001, 105, 3167-3175.	1.1	21
62	Kinetics and Mechanism of the OH and OD Reactions with BrO. Journal of Physical Chemistry A, 2001, 105, 6154-6166.	1.1	14
63	Kinetic Study of the Reactions of Br with HO2 and DO2. Journal of Physical Chemistry A, 2001, 105, 573-578.	1.1	14
64	Kinetics and mechanism of the reaction of Cl atoms with HO2 radicals. International Journal of Chemical Kinetics, 2001, 33, 317-327.	1.0	8
65	Kinetics and mechanism of the reaction of OH with ClO. International Journal of Chemical Kinetics, 2001, 33, 587-599.	1.0	16
66	Kinetic study of the reactions of OH and OD with HBr and DBr. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 128, 15-25.	2.0	32