## Philipp Hönicke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736152/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Simultaneous Dimensional and Analytical Characterization of Ordered Nanostructures. Small, 2022, 18, e2105776.                                                                                                                                                             | 10.0 | 7         |
| 2  | Reliable compositional analysis of airborne particulate matter beyond the quantification limits of total reflection X-ray fluorescence. Analytica Chimica Acta, 2022, 1192, 339367.                                                                                        | 5.4  | 9         |
| 3  | Polysulfide driven degradation in lithium–sulfur batteries during cycling – quantitative and high<br>time-resolution operando X-ray absorption study for dissolved polysulfides probed at both electrode<br>sides. Journal of Materials Chemistry A, 2021, 9, 10231-10239. | 10.3 | 15        |
| 4  | Quantitative manganese dissolution investigation in lithium-ion batteries by means of X-ray spectrometry techniques. Journal of Analytical Atomic Spectrometry, 2021, 36, 2056-2062.                                                                                       | 3.0  | 9         |
| 5  | Function of Hemoglobin-Based Oxygen Carriers: Determination of Methemoglobin Content by Spectral<br>Extinction Measurements. International Journal of Molecular Sciences, 2021, 22, 1753.                                                                                  | 4.1  | 5         |
| 6  | Shape- and Element-Sensitive Reconstruction of Periodic Nanostructures with Grazing Incidence X-ray Fluorescence Analysis and Machine Learning. Nanomaterials, 2021, 11, 1647.                                                                                             | 4.1  | 16        |
| 7  | Laboratory grazing-incidence X-ray fluorescence spectroscopy as an analytical tool for the<br>investigation of sub-nanometer CrSc multilayer water window optics. Spectrochimica Acta, Part B:<br>Atomic Spectroscopy, 2020, 174, 105995.                                  | 2.9  | 1         |
| 8  | Validation of secondary fluorescence excitation in quantitative X-ray fluorescence analysis of thin alloy films. Journal of Analytical Atomic Spectrometry, 2020, 35, 1664-1670.                                                                                           | 3.0  | 10        |
| 9  | Towards a traceable enhancement factor in surface-enhanced Raman spectroscopy. Journal of<br>Materials Chemistry C, 2020, 8, 16513-16519.                                                                                                                                  | 5.5  | 19        |
| 10 | Speciation of iron sulfide compounds by means of X-ray emission spectroscopy using a compact<br>full-cylinder von Hamos spectrometer. Journal of Analytical Atomic Spectrometry, 2020, 35, 2679-2685.                                                                      | 3.0  | 8         |
| 11 | Towards a calibration of laboratory setups for grazing incidence and total-reflection X-ray<br>fluorescence analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 174, 106009.                                                                                 | 2.9  | 6         |
| 12 | Material combination of Tunnel-SiO2 with a (sub-)Monolayer of ALD-AlOx on silicon offering a highly passivating hole selective contact. Solar Energy Materials and Solar Cells, 2020, 215, 110654.                                                                         | 6.2  | 20        |
| 13 | Interaction of nanoparticle properties and X-ray analytical techniques. Journal of Analytical Atomic Spectrometry, 2020, 35, 1022-1033.                                                                                                                                    | 3.0  | 9         |
| 14 | Grazing incidence-x-ray fluorescence for a dimensional and compositional characterization of well-ordered 2D and 3D nanostructures. Nanotechnology, 2020, 31, 505709.                                                                                                      | 2.6  | 12        |
| 15 | Experimental determination of line energies, line widths and relative transition probabilities of the<br>Gadolinium L x-ray emission spectrum. Metrologia, 2019, 56, 065007.                                                                                               | 1.2  | 8         |
| 16 | Amorphous Gadolinium Aluminate as a Dielectric and Sulfur for Indium Phosphide Passivation. ACS<br>Applied Electronic Materials, 2019, 1, 2190-2201.                                                                                                                       | 4.3  | 8         |
| 17 | Local structural investigation of hafnia-zirconia polymorphs in powders and thin films by X-ray absorption spectroscopy. Acta Materialia, 2019, 180, 158-169.                                                                                                              | 7.9  | 19        |
| 18 | Intercalation of Lithium Ions from Gaseous Precursors into β-MnO2 Thin Films Deposited by Atomic<br>Layer Deposition. Journal of Physical Chemistry C, 2019, 123, 15802-15814.                                                                                             | 3.1  | 11        |

Philipp HöNICKE

| #  | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Reference-free grazing incidence x-ray fluorescence and reflectometry as a methodology for<br>independent validation of x-ray reflectometry on ultrathin layer stacks and a depth-dependent<br>characterization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, . | 2.1 | 22        |
| 20 | Grazing incidence x-ray fluorescence based characterization of nanostructures for element sensitive profile reconstruction. , 2019, , .                                                                                                                                                              |     | 5         |
| 21 | Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence. Nanoscale, 2018, 10, 6177-6185.                                                                                                                                      | 5.6 | 29        |
| 22 | Relative L3 transition probabilities of titanium compounds as a function of the oxidation state using<br>high-resolution X-ray emission spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018,<br>145, 71-78.                                                                         | 2.9 | 9         |
| 23 | Development and characterization of sub-monolayer coatings as novel calibration samples for X-ray spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 145, 36-42.                                                                                                                  | 2.9 | 12        |
| 24 | Transfer-Free In Situ CCVD Grown Nanocrystalline Graphene for Sub-PPMV Ammonia Detection. ECS<br>Journal of Solid State Science and Technology, 2018, 7, Q3108-Q3113.                                                                                                                                | 1.8 | 8         |
| 25 | Development and Synchrotronâ€Based Characterization of Al and Cr Nanostructures as Potential<br>Calibration Samples for 3D Analytical Techniques. Physica Status Solidi (A) Applications and Materials<br>Science, 2018, 215, 1700866.                                                               | 1.8 | 12        |
| 26 | Accurate experimental determination of gallium K-Âand L3-shell XRF fundamental parameters. Journal<br>of Analytical Atomic Spectrometry, 2018, 33, 1003-1013.                                                                                                                                        | 3.0 | 20        |
| 27 | Determination of SiO <sub>2</sub> and C layers on a monocrystalline silicon sphere by reference-free x-ray fluorescence analysis. Metrologia, 2017, 54, 481-486.                                                                                                                                     | 1.2 | 6         |
| 28 | What are the correct Lâ€subshell photoionization cross sections for quantitative Xâ€ray spectroscopy?.<br>X-Ray Spectrometry, 2016, 45, 207-211.                                                                                                                                                     | 1.4 | 12        |
| 29 | Fundamental parameter determination to improve spectroscopical methods. , 2016, , .                                                                                                                                                                                                                  |     | Ο         |
| 30 | Surface characterization of silicon spheres by combined XRF and XPS analysis for determination of the avogadro constant. , 2016, , .                                                                                                                                                                 |     | 1         |
| 31 | Sacrificial Self-Assembled Monolayers for the Passivation of GaAs (100) Surfaces and Interfaces.<br>Chemistry of Materials, 2016, 28, 5689-5701.                                                                                                                                                     | 6.7 | 20        |
| 32 | Multiparameter characterization of subnanometre Cr/Sc multilayers based on complementary measurements. Journal of Applied Crystallography, 2016, 49, 2161-2171.                                                                                                                                      | 4.5 | 33        |
| 33 | Reference-free, depth-dependent characterization of nanolayers and gradient systems with advanced grazing incidence X-ray fluorescence analysis. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 523-528.                                                                   | 1.8 | 16        |
| 34 | Fundamental parameters of Zr and Ti for a reliable quantitative Xâ€ray fluorescence analysis. X-Ray<br>Spectrometry, 2015, 44, 217-220.                                                                                                                                                              | 1.4 | 22        |
| 35 | Depth profiling of low energy ion implantations in Si and Ge by means of micro-focused grazing emission X-ray fluorescence and grazing incidence X-ray fluorescence. Journal of Analytical Atomic Spectrometry, 2015, 30, 1086-1099.                                                                 | 3.0 | 15        |
| 36 | Characterization of High-k Nanolayers by Grazing Incidence X-ray Spectrometry. Materials, 2014, 7,<br>3147-3159.                                                                                                                                                                                     | 2.9 | 37        |

Philipp HöNICKE

| #  | Article                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Experimental Verification of the Individual Energy Dependencies of the Partial <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"<br/>display="inline"&gt;<mml:mi>L</mml:mi>-Shell Photoionization Cross Sections of Pd and Mo.<br/>Physical Review Letters, 2014, 113, 163001.</mml:math<br> | 7.8 | 25        |
| 38 | Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 98, 65-75.                                                                                                                                        | 2.9 | 17        |
| 39 | Complementary methodologies for thin film characterization in one tool – a novel instrument for 450 mm wafers. Journal of Analytical Atomic Spectrometry, 2013, 28, 549.                                                                                                                               | 3.0 | 6         |
| 40 | Impact of ammonium sulfide solution on electronic properties and ambient stability of germanium surfaces: towards Ge-based microelectronic devices. Journal of Materials Chemistry C, 2013, 1, 4105.                                                                                                   | 5.5 | 13        |
| 41 | Oxidation and Sulfidation of Germanium Surfaces: A Comparative Atomic Level Study of Different Passivation Schemes. ECS Transactions, 2013, 50, 569-579.                                                                                                                                               | 0.5 | 2         |
| 42 | Grazing-incidence x-ray fluorescence analysis for non-destructive determination of In and Ga depth<br>profiles in Cu(In,Ga)Se2 absorber films. Applied Physics Letters, 2013, 103, .                                                                                                                   | 3.3 | 15        |
| 43 | <pre><mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math&lt;/td"><td>2.5</td><td>49</td></mmi:math></pre>                                                                                                                                                              | 2.5 | 49        |
| 44 | display="inline"> communi>Z communi> communative lements. Physical Review A, 2012, 86, .<br>Characterization of ultra-shallow aluminum implants in silicon by grazing incidence and grazing<br>emission X-ray fluorescence spectroscopy. Journal of Analytical Atomic Spectrometry, 2012, 27, 1432.    | 3.0 | 35        |
| 45 | Focusing of soft X-ray radiation and characterization of the beam profile enabling X-ray emission<br>spectrometry at nanolayered specimens. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 78,<br>37-41.                                                                                      | 2.9 | 9         |
| 46 | Quantitative depth profiling of boron and arsenic ultra low energy implants by pulsed rf-GD-ToFMS.<br>Journal of Analytical Atomic Spectrometry, 2011, 26, 542-549.                                                                                                                                    | 3.0 | 18        |
| 47 | Depth profile characterization of ultra shallow junction implants. Analytical and Bioanalytical<br>Chemistry, 2010, 396, 2825-2832.                                                                                                                                                                    | 3.7 | 50        |
| 48 | Characterisation of Self-Assembled Monolayers on Germanium Surfaces via NEXAFS. ECS Transactions, 2009, 19, 227-234.                                                                                                                                                                                   | 0.5 | 2         |
| 49 | Preparation and Characterization of Self-Assembled Monolayers on Germanium Surfaces. Solid State<br>Phenomena, 2009, 145-146, 169-172.                                                                                                                                                                 | 0.3 | 12        |
| 50 | Depth-profiling of vertical sidewall nanolayers on structured wafers by grazing incidence X-ray flourescence. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 1359-1364.                                                                                                                   | 2.9 | 10        |
| 51 | Advanced Metrologies for Wafer Contamination and Nanolayer Characterization Using XRF Methods.<br>ECS Transactions, 2007, 11, 273-279.                                                                                                                                                                 | 0.5 | 4         |
| 52 | Complementary Metrology within a European Joint Laboratory. Solid State Phenomena, 0, 145-146,<br>97-100.                                                                                                                                                                                              | 0.3 | 9         |
| 53 | X-Ray Induced Depth Profiling of Ion Implantations into Various Semiconductor Materials. Solid State<br>Phenomena, 0, 195, 274-276.                                                                                                                                                                    | 0.3 | 1         |
| 54 | Reliable Quantification of Inorganic Contamination by TXRF. Solid State Phenomena, 0, 187, 291-294.                                                                                                                                                                                                    | 0.3 | 4         |

| #  | Article                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reference Samples for Ultra Trace Analysis of Organic Compounds on Substrate Surfaces. Solid State<br>Phenomena, 0, 187, 295-298. | 0.3 | 2         |