
## Alvaro RodrÃ-guez-Prieto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736081/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multicriteria Analytical Model for Mechanical Integrity Prognostics of Reactor Pressure Vessels<br>Manufactured from Forged and Rolled Steels. Mathematics, 2022, 10, 1779.                                                                                                                                              | 2.2 | Ο         |
| 2  | Special Issue of the Manufacturing Engineering Society 2021 (SIMES-2021). Materials, 2022, 15, 4772.                                                                                                                                                                                                                     | 2.9 | 1         |
| 3  | Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore<br>Hardness Measurements. Polymers, 2021, 13, 943.                                                                                                                                                                          | 4.5 | 6         |
| 4  | Analysis of the Technological Evolution of Materials Requirements Included in Reactor Pressure<br>Vessel Manufacturing Codes. Sustainability, 2021, 13, 5498.                                                                                                                                                            | 3.2 | 3         |
| 5  | Can Accelerated Aging Procedures Predict the Long Term Behavior of Polymers Exposed to Different<br>Environments?. Polymers, 2021, 13, 2688.                                                                                                                                                                             | 4.5 | 39        |
| 6  | Topological Optimization of Artificial Neural Networks to Estimate Mechanical Properties in Metal<br>Forming Using Machine Learning. Metals, 2021, 11, 1289.                                                                                                                                                             | 2.3 | 9         |
| 7  | Evolution of Standardized Specifications on Materials, Manufacturing and In-Service Inspection of Nuclear Reactor Vessels. Sustainability, 2021, 13, 10510.                                                                                                                                                              | 3.2 | 3         |
| 8  | Selection of Die Material and Its Impact on the Multi-Material Extrusion of Bimetallic AZ31B–Ti6Al4V<br>Components for Aeronautical Applications. Materials, 2021, 14, 7568.                                                                                                                                             | 2.9 | 4         |
| 9  | Prediction of Physical and Mechanical Properties for Metallic Materials Selection Using Big Data and Artificial Neural Networks. IEEE Access, 2020, 8, 13444-13456.                                                                                                                                                      | 4.2 | 13        |
| 10 | Effect of Process Parameters and Definition of Favorable Conditions in Multi-Material Extrusion of<br>Bimetallic AZ31B–Ti6Al4V Billets. Applied Sciences (Switzerland), 2020, 10, 8048.                                                                                                                                  | 2.5 | 7         |
| 11 | Prediction of Mechanical Properties by Artificial Neural Networks to Characterize the Plastic<br>Behavior of Aluminum Alloys. Materials, 2020, 13, 5227.                                                                                                                                                                 | 2.9 | 37        |
| 12 | Prediction of the Bilinear Stress-Strain Curve of Aluminum Alloys Using Artificial Intelligence and Big<br>Data. Metals, 2020, 10, 904.                                                                                                                                                                                  | 2.3 | 16        |
| 13 | Reliability-Based Evaluation of the Suitability of Polymers for Additive Manufacturing Intended for<br>Extreme Operating Conditions. Polymers, 2020, 12, 2327.                                                                                                                                                           | 4.5 | 2         |
| 14 | Fitness for Service and Reliability of Materials for Manufacturing Components Intended for<br>Demanding Service Conditions in the Petrochemical Industry. IEEE Access, 2020, 8, 92275-92286.                                                                                                                             | 4.2 | 2         |
| 15 | Reliability and Thermal Aging of Polymers Intended to Severe Operating Conditions. , 2020, 69, .                                                                                                                                                                                                                         |     | 1         |
| 16 | Computer-aided sensitivity analysis of a multicriteria decision-making methodology for the evaluation of materials requirements stringency in the nuclear components manufacturing. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 2094-2107. | 1.1 | 1         |
| 17 | Analytical and numerical study for selecting polymeric matrix composites intended to nuclear applications. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 2072-2083.                                                                          | 1.1 | 3         |
| 18 | Analysis of mechanical and thermal properties of elastomers for manufacturing of components in the nuclear industry. Procedia Manufacturing, 2019, 41, 177-184.                                                                                                                                                          | 1.9 | 2         |

| #  | Article                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Comparative analysis of artificial intelligence techniques for material selection applied to manufacturing in Industry 4.0. Procedia Manufacturing, 2019, 41, 42-49.                                                                                                                             | 1.9 | 22        |
| 20 | An Experimental and Numerical Analysis of the Compression of Bimetallic Cylinders. Materials, 2019, 12, 4094.                                                                                                                                                                                    | 2.9 | 8         |
| 21 | Selection of candidate materials for reactor pressure vessels: Application of irradiation embrittlement prediction models and a stringency level methodology. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233, 965-976. | 1.1 | 3         |
| 22 | An educational software to reinforce the comprehensive learning of materials selection. Computer Applications in Engineering Education, 2018, 26, 125-140.                                                                                                                                       | 3.4 | 12        |
| 23 | Polymers Selection for Harsh Environments to Be Processed Using Additive Manufacturing<br>Techniques. IEEE Access, 2018, 6, 29899-29911.                                                                                                                                                         | 4.2 | 13        |
| 24 | Analysis of Favorable Process Conditions for the Manufacturing of Thin-Wall Pieces of Mild Steel<br>Obtained by Wire and Arc Additive Manufacturing (WAAM). Materials, 2018, 11, 1449.                                                                                                           | 2.9 | 37        |
| 25 | Multicriteria materials selection for extreme operating conditions based on a multiobjective analysis of irradiation embrittlement and hot cracking prediction models. International Journal of Mechanics and Materials in Design, 2018, 14, 617-634.                                            | 3.0 | 10        |
| 26 | Quantitative analysis of prediction models for hot cracking in industrial stainless steels using<br>standardized requirements. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 2147-2155.                                                                                       | 1.3 | 5         |
| 27 | Analysis of the techno-economic implications generated by the selection of manufacturing codes of pressure vessels for high demanding applications. Procedia Manufacturing, 2017, 13, 235-242.                                                                                                   | 1.9 | 0         |
| 28 | Development of a Computer Tool to Support the Teaching of Materials Technology. Materials Science Forum, 2017, 903, 17-23.                                                                                                                                                                       | 0.3 | 3         |
| 29 | Materials Selection Criteria for Nuclear Power Applications: A Decision Algorithm. Jom, 2016, 68, 496-506.                                                                                                                                                                                       | 1.9 | 21        |
| 30 | New Decision Methodology for Selecting Manufacturing Codes of Nuclear Reactor Pressure-Vessels.<br>Annals of DAAAM & Proceedings, 2016, , 0693-0698.                                                                                                                                             | 0.1 | 1         |
| 31 | Prediction of the Mechanical Behaviour of Cladding Materials for Nuclear Reactor Pressure–Vessels<br>Based on the Analysis of Technological Requirements. Procedia Engineering, 2015, 100, 1301-1308.                                                                                            | 1.2 | 7         |