
Stéphane Giraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736005/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Far-Infrared Emission Properties and Thermogravimetric Analysis of Ceramic-Embedded Polyurethane Films. Polymers, 2021, 13, 686.	2.0	8
2	Fire Behavior of Thermally Thin Materials in Cone Calorimeter. Polymers, 2021, 13, 1297.	2.0	17
3	Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability. Chinese Journal of Polymer Science (English) Tj ETQq1 1	0.78 6 314	ł rg₿₫ /Overic
4	Development of new composite fibers with excellent UV radiation protection. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113905.	1.3	12
5	Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants. Molecules, 2020, 25, 4963.	1.7	9
6	Textiles for health: a review of textile fabrics treated with chitosan microcapsules. Environmental Chemistry Letters, 2019, 17, 1787-1800.	8.3	53
7	Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics, 2019, 11, 403.	2.0	32
8	Manufacture Techniques of Chitosan-Based Microcapsules to Enhance Functional Properties of Textiles. Sustainable Agriculture Reviews, 2019, , 303-336.	0.6	3
9	Preparation of a novel composite based polyester nonwovens with high mechanical resistance and wash fastness properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 604-612.	2.3	3
10	Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends. Polymers, 2019, 11, 180.	2.0	18
11	Influence of Ammonium Polyphosphate/Lignin Ratio on Thermal and Fire Behavior of Biobased Thermoplastic: The Case of Polyamide 11. Materials, 2019, 12, 1146.	1.3	24
12	Fire retardant action of zinc phosphinate and polyamide 11 blend containing lignin as a carbon source. Polymer Degradation and Stability, 2018, 153, 63-74.	2.7	29
13	Influence of grammage on heat release rate of polypropylene fabrics. Journal of Fire Sciences, 2018, 36, 30-46.	0.9	11
14	Correlation between Surface Engineering and Deformation Response of Some Natural Polymer Fibrous Systems. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300.	0.5	4
15	Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. International Journal of Molecular Sciences, 2018, 19, 2521.	1.8	41
16	Influence of process parameters on microcapsule formation from chitosan—Type B gelatin complex coacervates. Carbohydrate Polymers, 2018, 198, 281-293.	5.1	34
17	PROCESS OPTIMIZATION OF ECO-FRIENDLY FLAME RETARDANT FINISH FOR COTTON FABRIC: A RESPONSE SURFACE METHODOLOGY APPROACH. Surface Review and Letters, 2017, 24, 1750114.	0.5	19
18	Surface behavior and bulk properties of aqueous chitosan and type-B gelatin solutions for effective emulsion formulation. Carbohydrate Polymers, 2017, 173, 202-214.	5.1	15

STéPHANE GIRAUD

#	Article	IF	CITATIONS
19	Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Industrial & Engineering Chemistry Research, 2017, 56, 13704-13714.	1.8	39
20	Water vapor permeability of thermosensitive polyurethane films obtained from isophorone diisocyanate and polyester or polyether polyol. Journal of Materials Science, 2017, 52, 1014-1027.	1.7	6
21	Intumescent formulations based on lignin and phosphinates for the bio-based textiles. IOP Conference Series: Materials Science and Engineering, 2017, 254, 052004.	0.3	3
22	Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile. IOP Conference Series: Materials Science and Engineering, 2017, 254, 072020.	0.3	6
23	An Alternative for the End-of-life Phase of Flame Retardant Textile Products: Degradation of Flame Retardant and Preliminary Settings of Energy Valorization by Gasification. BioResources, 2017, 12, .	0.5	17
24	Application of Flame-Retardant Double-Layered Shell Microcapsules to Nonwoven Polyester. Polymers, 2016, 8, 267.	2.0	7
25	PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers, 2016, 8, 331.	2.0	112
26	In situ degradation of organophosphorus flame retardant on cellulosic fabric using advanced oxidation process: A study on degradation and characterization. Polymer Degradation and Stability, 2016, 126, 1-8.	2.7	19
27	Development of a Halogen Free Flame Retardant Masterbatch for Polypropylene Fibers. Polymers, 2015, 7, 220-234.	2.0	27
28	Functionalization of a bamboo knitted fabric using air plasma treatment for the improvement of microcapsules embedding. Journal of the Textile Institute, 2015, 106, 119-132.	1.0	11
29	Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate. Journal of Materials Science, 2013, 48, 7935-7948.	1.7	24
30	Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate. Polymer Degradation and Stability, 2013, 98, 2663-2671.	2.7	19
31	Fire performances comparison of back coating and melt spinning approaches for PET covering textiles. Polymer Degradation and Stability, 2012, 97, 1083-1089.	2.7	50
32	Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents. Polymer Degradation and Stability, 2012, 97, 2545-2551.	2.7	38
33	Synthesis, characterization and drug release properties of thermosensitive poly(N-isopropylacrylamide) microgels. Journal of Polymer Research, 2012, 19, 1.	1.2	13
34	A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy. Polymer Degradation and Stability, 2012, 97, 383-391.	2.7	48
35	Development of fire resistant PET fibrous structures based on phosphinate-POSS blends. Polymer Degradation and Stability, 2012, 97, 879-885.	2.7	32
36	Development and characterization of thermosensitive hydrogels based on poly(<i>N</i> â€isopropylacrylamide) and calcium alginate. Journal of Applied Polymer Science, 2012, 124, 890-903.	1.3	33

STéPHANE GIRAUD

#	Article	IF	CITATIONS
37	Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polymer Degradation and Stability, 2010, 95, 315-319.	2.7	26
38	Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance. Polymer Degradation and Stability, 2010, 95, 1716-1720.	2.7	38
39	Polypropylene multifilament yarn filled with clay and/or graphite: Study of a potential synergy. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1185-1195.	2.4	11
40	Influence of fiber-like nanofillers on the rheological, mechanical, thermal and fire properties of polypropylene: An application to multifilament yarn. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1797-1806.	3.8	39
41	Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. Polymer Degradation and Stability, 2009, 94, 955-964.	2.7	34
42	Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. Reactive and Functional Polymers, 2006, 66, 1118-1125.	2.0	113
43	Microencapsulation of ammonium phosphate with a polyurethane shell part I: Coacervation technique. Reactive and Functional Polymers, 2005, 64, 127-138.	2.0	115
44	Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polymer Degradation and Stability, 2005, 88, 106-113.	2.7	126
45	Use of mesoporous silica as a reinforcing agent in rubber compounds. E-Polymers, 2005, 5, .	1.3	5
46	Microencapsulation of phosphate. Polymer Degradation and Stability, 2002, 77, 285-297.	2.7	103
47	Flame Behavior of Cotton Coated with Polyurethane Containing Microencapsulated Flame Retardant Agent. Journal of Industrial Textiles, 2001, 31, 11-26.	1.1	38
48	Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. , 0, , .		79
49	Chitosan-Based Sustainable Textile Technology: Process, Mechanism, Innovation, and Safety. , 0, , .		12
50	An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems. , 0, , .		43