Stéphane Giraud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2736005/publications.pdf

Version: 2024-02-01

		279487	3	315357	
50	1,628	23		38	
papers	citations	h-index		g-index	
			_		
50	50	50		1721	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Flame retarded polyurea with microencapsulated ammonium phosphate for textile coating. Polymer Degradation and Stability, 2005, 88, 106-113.	2.7	126
2	Microencapsulation of ammonium phosphate with a polyurethane shell part I: Coacervation technique. Reactive and Functional Polymers, 2005, 64, 127-138.	2.0	115
3	Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. Reactive and Functional Polymers, 2006, 66, 1118-1125.	2.0	113
4	PLA with Intumescent System Containing Lignin and Ammonium Polyphosphate for Flame Retardant Textile. Polymers, 2016, 8, 331.	2.0	112
5	Microencapsulation of phosphate. Polymer Degradation and Stability, 2002, 77, 285-297.	2.7	103
6	Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. , 0, , .		79
7	Textiles for health: a review of textile fabrics treated with chitosan microcapsules. Environmental Chemistry Letters, 2019, 17, 1787-1800.	8.3	53
8	Fire performances comparison of back coating and melt spinning approaches for PET covering textiles. Polymer Degradation and Stability, 2012, 97, 1083-1089.	2.7	50
9	A comparative study of POSS as synergists with zinc phosphinates for PET fire retardancy. Polymer Degradation and Stability, 2012, 97, 383-391.	2.7	48
10	An Overview on the Use of Lignin and Its Derivatives in Fire Retardant Polymer Systems. , 0 , , .		43
11	Chitosan–Carboxymethylcellulose-Based Polyelectrolyte Complexation and Microcapsule Shell Formulation. International Journal of Molecular Sciences, 2018, 19, 2521.	1.8	41
12	Influence of fiber-like nanofillers on the rheological, mechanical, thermal and fire properties of polypropylene: An application to multifilament yarn. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1797-1806.	3.8	39
13	Thermal Stability and Fire Retardant Properties of Polyamide 11 Microcomposites Containing Different Lignins. Industrial & Different Chemistry Research, 2017, 56, 13704-13714.	1.8	39
14	Flame Behavior of Cotton Coated with Polyurethane Containing Microencapsulated Flame Retardant Agent. Journal of Industrial Textiles, 2001, 31, 11-26.	1.1	38
15	Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance. Polymer Degradation and Stability, 2010, 95, 1716-1720.	2.7	38
16	Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents. Polymer Degradation and Stability, 2012, 97, 2545-2551.	2.7	38
17	Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. Polymer Degradation and Stability, 2009, 94, 955-964.	2.7	34
18	Influence of process parameters on microcapsule formation from chitosanâ€"Type B gelatin complex coacervates. Carbohydrate Polymers, 2018, 198, 281-293.	5.1	34

#	Article	IF	Citations
19	Development and characterization of thermosensitive hydrogels based on poly(<i>N</i> à€isopropylacrylamide) and calcium alginate. Journal of Applied Polymer Science, 2012, 124, 890-903.	1.3	33
20	Development of fire resistant PET fibrous structures based on phosphinate-POSS blends. Polymer Degradation and Stability, 2012, 97, 879-885.	2.7	32
21	Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics, 2019, 11, 403.	2.0	32
22	Fire retardant action of zinc phosphinate and polyamide 11 blend containing lignin as a carbon source. Polymer Degradation and Stability, 2018, 153, 63-74.	2.7	29
23	Development of a Halogen Free Flame Retardant Masterbatch for Polypropylene Fibers. Polymers, 2015, 7, 220-234.	2.0	27
24	Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polymer Degradation and Stability, 2010, 95, 315-319.	2.7	26
25	Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate. Journal of Materials Science, 2013, 48, 7935-7948.	1.7	24
26	Influence of Ammonium Polyphosphate/Lignin Ratio on Thermal and Fire Behavior of Biobased Thermoplastic: The Case of Polyamide 11. Materials, 2019, 12, 1146.	1.3	24
27	Microencapsulation of bisphenol-A bis (diphenyl phosphate) and influence of particle loading on thermal and fire properties of polypropylene and polyethylene terephtalate. Polymer Degradation and Stability, 2013, 98, 2663-2671.	2.7	19
28	In situ degradation of organophosphorus flame retardant on cellulosic fabric using advanced oxidation process: A study on degradation and characterization. Polymer Degradation and Stability, 2016, 126, 1-8.	2.7	19
29	PROCESS OPTIMIZATION OF ECO-FRIENDLY FLAME RETARDANT FINISH FOR COTTON FABRIC: A RESPONSE SURFACE METHODOLOGY APPROACH. Surface Review and Letters, 2017, 24, 1750114.	0.5	19
30	Valorization of Industrial Lignin as Biobased Carbon Source in Fire Retardant System for Polyamide 11 Blends. Polymers, 2019, 11, 180.	2.0	18
31	An Alternative for the End-of-life Phase of Flame Retardant Textile Products: Degradation of Flame Retardant and Preliminary Settings of Energy Valorization by Gasification. BioResources, 2017, 12, .	0.5	17
32	Fire Behavior of Thermally Thin Materials in Cone Calorimeter. Polymers, 2021, 13, 1297.	2.0	17
33	Surface behavior and bulk properties of aqueous chitosan and type-B gelatin solutions for effective emulsion formulation. Carbohydrate Polymers, 2017, 173, 202-214.	5.1	15
34	Synthesis, characterization and drug release properties of thermosensitive poly(N-isopropylacrylamide) microgels. Journal of Polymer Research, 2012, 19, 1.	1.2	13
35	Chitosan-Based Sustainable Textile Technology: Process, Mechanism, Innovation, and Safety. , 0, , .		12
36	Development of new composite fibers with excellent UV radiation protection. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118, 113905.	1.3	12

#	Article	IF	Citations
37	Polypropylene multifilament yarn filled with clay and/or graphite: Study of a potential synergy. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1185-1195.	2.4	11
38	Functionalization of a bamboo knitted fabric using air plasma treatment for the improvement of microcapsules embedding. Journal of the Textile Institute, 2015, 106, 119-132.	1.0	11
39	Influence of grammage on heat release rate of polypropylene fabrics. Journal of Fire Sciences, 2018, 36, 30-46.	0.9	11
40	Polyester-supported Chitosan-Poly(vinylidene fluoride)-Inorganic-Oxide-Nanoparticles Composites with Improved Flame Retardancy and Thermal Stability. Chinese Journal of Polymer Science (English) Tj ETQq0 0	0 r gB 0T/O	verbook 10 Tf
41	Development of Novel Polyamide 11 Multifilaments and Fabric Structures Based on Industrial Lignin and Zinc Phosphinate as Flame Retardants. Molecules, 2020, 25, 4963.	1.7	9
42	Far-Infrared Emission Properties and Thermogravimetric Analysis of Ceramic-Embedded Polyurethane Films. Polymers, 2021, 13, 686.	2.0	8
43	Application of Flame-Retardant Double-Layered Shell Microcapsules to Nonwoven Polyester. Polymers, 2016, 8, 267.	2.0	7
44	Water vapor permeability of thermosensitive polyurethane films obtained from isophorone diisocyanate and polyester or polyether polyol. Journal of Materials Science, 2017, 52, 1014-1027.	1.7	6
45	Chitosan-carboxymethylcellulose based microcapsules formulation for controlled release of active ingredients from cosmeto textile. IOP Conference Series: Materials Science and Engineering, 2017, 254, 072020.	0.3	6
46	Use of mesoporous silica as a reinforcing agent in rubber compounds. E-Polymers, 2005, 5, .	1.3	5
47	Correlation between Surface Engineering and Deformation Response of Some Natural Polymer Fibrous Systems. Journal of Engineered Fibers and Fabrics, 2018, 13, 155892501801300.	0.5	4
48	Intumescent formulations based on lignin and phosphinates for the bio-based textiles. IOP Conference Series: Materials Science and Engineering, 2017, 254, 052004.	0.3	3
49	Manufacture Techniques of Chitosan-Based Microcapsules to Enhance Functional Properties of Textiles. Sustainable Agriculture Reviews, 2019, , 303-336.	0.6	3
50	Preparation of a novel composite based polyester nonwovens with high mechanical resistance and wash fastness properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 604-612.	2.3	3