
Wang-Cheng Zhan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2735940/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Highly Effective Catalyst of Sm-MnO _{<i>x</i>} for the NH ₃ -SCR of NO _{<i>x</i>} at Low Temperature: Promotional Role of Sm and Its Catalytic Performance. ACS Catalysis, 2015, 5, 5973-5983.	5.5	457
2	Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B=Co, Ni, Fe) catalysts. Applied Catalysis B: Environmental, 2013, 129, 509-516.	10.8	270
3	Promoting Effects of In ₂ O ₃ on Co ₃ O ₄ for CO Oxidation: Tuning O ₂ Activation and CO Adsorption Strength Simultaneously. ACS Catalysis, 2014, 4, 4143-4152.	5.5	250
4	Ru/CeO ₂ Catalyst with Optimized CeO ₂ Support Morphology and Surface Facets for Propane Combustion. Environmental Science & Technology, 2019, 53, 5349-5358.	4.6	228
5	A Sacrificial Coating Strategy Toward Enhancement of Metal–Support Interaction for Ultrastable Au Nanocatalysts. Journal of the American Chemical Society, 2016, 138, 16130-16139.	6.6	217
6	Low-Temperature Methane Combustion over Pd/H-ZSM-5: Active Pd Sites with Specific Electronic Properties Modulated by Acidic Sites of H-ZSM-5. ACS Catalysis, 2016, 6, 8127-8139.	5.5	212
7	Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2018, 221, 652-663.	10.8	204
8	Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation. Journal of the American Chemical Society, 2017, 139, 8846-8854.	6.6	181
9	Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 2019, 10, 1611.	5.8	168
10	Total Oxidation of Propane over a Ru/CeO ₂ Catalyst at Low Temperature. Environmental Science & Technology, 2018, 52, 9531-9541.	4.6	165
11	Hydrothermal synthesis of NiCeOx nanosheets and its application to the total oxidation of propane. Applied Catalysis B: Environmental, 2018, 225, 110-120.	10.8	149
12	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2017, 56, 4494-4498.	7.2	129
13	Phosphate-Functionalized CeO ₂ Nanosheets for Efficient Catalytic Oxidation of Dichloromethane. Environmental Science & Technology, 2018, 52, 13430-13437.	4.6	128
14	Comparative studies of P/CeO2 and Ru/CeO2 catalysts for catalytic combustion of dichloromethane: From effects of H2O to distribution of chlorinated by-products. Applied Catalysis B: Environmental, 2019, 249, 9-18.	10.8	124
15	Current status and perspectives of rare earth catalytic materials and catalysis. Chinese Journal of Catalysis, 2014, 35, 1238-1250.	6.9	120
16	HCl-Tolerant H _{<i>x</i>} PO ₄ /RuO _{<i>x</i>} –CeO ₂ Catalysts for Extremely Efficient Catalytic Elimination of Chlorinated VOCs. Environmental Science & Technology, 2021, 55, 4007-4016.	4.6	107
17	Identification of Active Area as Active Center for CO Oxidation over Single Au Atom Catalyst. ACS Catalysis, 2020, 10, 6094-6101.	5.5	106
18	Activity and stability of Co 3 O 4 -based catalysts for soot oxidation: The enhanced effect of Bi 2 O 3 on activation and transfer of oxygen. Applied Catalysis B: Environmental, 2017, 209, 33-44.	10.8	103

#	Article	IF	CITATIONS
19	The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO ₂ . Catalysis Science and Technology, 2018, 8, 2567-2577.	2.1	103
20	A Facile Way To Improve Pt Atom Efficiency for CO Oxidation at Low Temperature: Modification by Transition Metal Oxides. ACS Catalysis, 2019, 9, 6177-6187.	5.5	99
21	Superior catalytic activity of a Pd catalyst in methane combustion by fine-tuning the phase of ceria-zirconia support. Applied Catalysis B: Environmental, 2020, 266, 118631.	10.8	99
22	The promotional role of Ce in Cu/ZSM-5 and in situ surface reaction for selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2015, 5, 90235-90244.	1.7	98
23	Significant Improvement of Catalytic Performance for Chlorinated Volatile Organic Compound Oxidation over RuO <i>_x</i> Supported on Acid-Etched Co ₃ O ₄ . Environmental Science & Technology, 2021, 55, 10734-10743.	4.6	97
24	NixAl1O2-δ mesoporous catalysts for dry reforming of methane: The special role of NiAl2O4 spinel phase and its reaction mechanism. Applied Catalysis B: Environmental, 2021, 291, 120074.	10.8	93
25	Catalytic oxidation of chlorinated volatile organic compounds over Mn-Ti composite oxides catalysts: Elucidating the influence of surface acidity. Applied Catalysis B: Environmental, 2021, 282, 119577.	10.8	85
26	An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Applied Catalysis A: General, 2016, 523, 97-106.	2.2	81
27	Preparation of high oxygen storage capacity and thermally stable ceria–zirconia solid solution. Catalysis Science and Technology, 2016, 6, 897-907.	2.1	80
28	A novel Ce/AlPO-5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chemistry, 2006, 8, 459.	4.6	76
29	Surface tuning of noble metal doped perovskite oxide by synergistic effect of thermal treatment and acid etching: A new path to high-performance catalysts for methane combustion. Applied Catalysis B: Environmental, 2018, 239, 373-382.	10.8	76
30	Titania–Samarium–Manganese Composite Oxide for the Low-Temperature Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2020, 54, 2530-2538.	4.6	75
31	Synthesis of Lanthanum-Doped MCM-48 Molecular Sieves and Its Catalytic Performance for the Oxidation of Styrene. Journal of Physical Chemistry B, 2007, 111, 12103-12110.	1.2	74
32	Direct oxidation of methane to oxygenates on supported single Cu atom catalyst. Applied Catalysis B: Environmental, 2021, 285, 119827.	10.8	72
33	A highly effective catalyst of Sm-Mn mixed oxide for the selective catalytic reduction of NO x with ammonia: Effect of the calcination temperature. Journal of Molecular Catalysis A, 2016, 420, 272-281.	4.8	66
34	Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO ₂ Catalysts. Environmental Science & Technology, 2022, 56, 9661-9671.	4.6	65
35	An efficient Sn Mn1-O composite oxide catalyst for catalytic combustion of vinyl chloride emissions. Applied Catalysis B: Environmental, 2019, 255, 117748.	10.8	64
36	Epoxidation of propylene by molecular oxygen over supported Ag–Cu bimetallic catalysts with low Ag loading. Journal of Molecular Catalysis A, 2012, 357, 106-111.	4.8	56

#	Article	IF	CITATIONS
37	The existing states of potassium species in K-doped Co ₃ O ₄ catalysts and their influence on the activities for NO and soot oxidation. Catalysis Science and Technology, 2017, 7, 4710-4719.	2.1	52
38	Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content. Chinese Journal of Catalysis, 2016, 37, 2069-2078.	6.9	49
39	Performance of Fe-ZSM-5 for selective catalytic reduction of NO x with NH 3 : Effect of the atmosphere during the preparation of catalysts. Journal of Molecular Catalysis A, 2016, 424, 232-240.	4.8	49
40	Incorporating Rich Mesoporosity into a Ceria-Based Catalyst via Mechanochemistry. Chemistry of Materials, 2017, 29, 7323-7329.	3.2	45
41	Synthesis of mesoporous CeO2-MnOx binary oxides and their catalytic performances for CO oxidation. Journal of Rare Earths, 2014, 32, 146-152.	2.5	42
42	Catalytic mechanism and pathways of 1, 2-dichloropropane oxidation over LaMnO3 perovskite: An experimental and DFT study. Journal of Hazardous Materials, 2021, 402, 123473.	6.5	42
43	Synthesis of cerium-doped MCM-48 molecular sieves and its catalytic performance for selective oxidation of cyclohexane. Journal of Rare Earths, 2008, 26, 515-522.	2.5	41
44	A highly effective Ni-modified MnO _x catalyst for total oxidation of propane: the promotional role of nickel oxide. RSC Advances, 2016, 6, 50228-50237.	1.7	41
45	Selective catalytic oxidation of ammonia over MnO _x –TiO ₂ mixed oxides. RSC Advances, 2016, 6, 88117-88125.	1.7	40
46	Confinement of subnanometric PdCo bimetallic oxide clusters in zeolites for methane complete oxidation. Chemical Engineering Journal, 2021, 418, 129398.	6.6	40
47	Catalytic combustion of methane over Pd/SnO 2 catalysts. Chinese Journal of Catalysis, 2017, 38, 1322-1329.	6.9	38
48	Surface tuning of LaCoO3 perovskite by acid etching to enhance its catalytic performance. Rare Metals, 2021, 40, 555-562.	3.6	36
49	Superior catalytic activity of Pd-based catalysts upon tuning the structure of the ceria-zirconia support for methane combustion. Chemical Engineering Journal, 2021, 416, 129150.	6.6	36
50	Soot combustion over Ag catalysts supported on shape-controlled CeO2. Catalysis Today, 2021, 376, 9-18.	2.2	35
51	Ethylene glycol assisted synthesis of hierarchical Fe-ZSM-5 nanorods assembled microsphere for adsorption Fenton degradation of chlorobenzene. Journal of Hazardous Materials, 2020, 385, 121581.	6.5	34
52	Catalytic combustion of vinyl chloride over Sr doped LaMnO3. Catalysis Today, 2019, 327, 190-195.	2.2	32
53	Phosphate-assisted synthesis of ultrathin and thermally stable alumina nanosheets as robust Pd support for catalytic combustion of propane. Applied Catalysis B: Environmental, 2021, 286, 119949.	10.8	32
54	A highly-efficient La–MnO _x catalyst for propane combustion: the promotional role of La and the effect of the preparation method. Catalysis Science and Technology, 2016, 6, 8222-8233.	2.1	31

#	Article	IF	CITATIONS
55	Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure over Cu–CeO2–Al2O3 catalyst. Journal of Molecular Catalysis A, 2011, 337, 77-81.	4.8	30
56	Catalytic activity of Cu–SSZ-13 prepared with different methods for NH3-SCR reaction. Rare Metals, 2019, 38, 210-220.	3.6	30
57	Investigation into Enhanced Catalytic Performance for Epoxidation of Styrene over LaSrCo _{<i>x</i>} Fe _{2–<i>x</i>} O ₆ Double Perovskites: The Role of Singlet Oxygen Species Promoted by the Photothermal Effect. ACS Catalysis, 2021, 11, 11855-11866.	5.5	30
58	Catalytic performance of Co–Fe mixed oxide for NH ₃ -SCR reaction and the promotional role of cobalt. RSC Advances, 2016, 6, 66169-66179.	1.7	29
59	Study of Higher Selectivity to Styrene Oxide in the Epoxidation of Styrene with Hydrogen Peroxide over La-Doped MCM-48 Catalyst. Journal of Physical Chemistry C, 2009, 113, 7181-7185.	1.5	28
60	Immobilization of glucose isomerase onto GAMM support for isomerization of glucose to fructose. Journal of Molecular Catalysis B: Enzymatic, 2011, 72, 73-76.	1.8	28
61	Epoxidation of propylene by molecular oxygen over unsupported AgCu x bimetallic catalyst. Rare Metals, 2015, 34, 477-490.	3.6	28
62	Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation: The effects of SBA-15 support and silylation. Microporous and Mesoporous Materials, 2014, 183, 150-155.	2.2	27
63	Catalytic Performance of MgO-Supported Co Catalyst for the Liquid Phase Oxidation of Cyclohexane with Molecular Oxygen. Catalysts, 2017, 7, 155.	1.6	27
64	Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Applied Surface Science, 2021, 556, 149766.	3.1	26
65	Gas-phase epoxidation of propylene by molecular oxygen over Ag-CuCl 2 /BaCO 3 catalyst with low CuCl 2 doping: Catalytic performance, deactivation and regeneration. Journal of Molecular Catalysis A, 2016, 424, 65-76.	4.8	25
66	Solvent-free selective oxidation of cyclohexane with molecular oxygen over manganese oxides: Effect of the calcination temperature. Chinese Journal of Catalysis, 2016, 37, 184-192.	6.9	24
67	Ruthenium oxides supported on heterostructured CoPO-MCF materials for catalytic oxidation of vinyl chloride emissions. Journal of Hazardous Materials, 2018, 342, 290-296.	6.5	23
68	Thermal stability of Si-doped V2O5/WO3–TiO2 for selective catalytic reduction of NOx by NH3. Rare Metals, 2019, 38, 292-298.	3.6	23
69	Effect of surface functionalization of cerium-doped MCM-48 on its catalytic performance for liquid-phase free-solvent oxidation of cyclohexane with molecular oxygen. Microporous and Mesoporous Materials, 2015, 214, 101-107.	2.2	22
70	Gas-phase epoxidation of propylene by molecular oxygen over Ag/BaCO3 catalysts: Effect of preparation conditions. Catalysis Today, 2016, 276, 2-10.	2.2	22
71	Aldehyde-functionalized mesostructured cellular foams prepared by copolymerization method for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2015, 202, 90-96.	2.2	21
72	Catalytic wet oxidation of aniline over Ru catalysts supported on a modified TiO 2. Chinese Journal of Catalysis, 2017, 38, 1155-1165.	6.9	21

#	Article	IF	CITATIONS
73	Effect of ceria morphology on the performance of MnOx/CeO2 catalysts in catalytic combustion of N,N-dimethylformamide. Catalysis Science and Technology, 2020, 10, 2473-2483.	2.1	21
74	Oxy-Anionic Doping: A New Strategy for Improving Selectivity of Ru/CeO ₂ with Synergetic Versatility and Thermal Stability for Catalytic Oxidation of Chlorinated Volatile Organic Compounds. Environmental Science & Technology, 2022, 56, 8854-8863.	4.6	21
75	The synthesis of Co-doped SAPO-5 molecular sieve and its performance in the oxidation of cyclohexane with molecular oxygen. Chinese Journal of Catalysis, 2016, 37, 273-280.	6.9	20
76	In situ assembly of ultrafine Mn ₃ O ₄ nanoparticles into MIL-101 for selective aerobic oxidation. Catalysis Science and Technology, 2017, 7, 4136-4144.	2.1	20
77	A novel method for the synthesis of CexZr1-xO2 solid solution with high purity of κappa phase and excellent reactive activity. Catalysis Today, 2019, 327, 262-270.	2.2	20
78	Synthesis of lathanum or La-B doped KIT-6 mesoporous materials and their application in the catalytic oxidation of styrene. Journal of Rare Earths, 2010, 28, 369-375.	2.5	19
79	Catalytic oxidation of hydrogen chloride to chlorine over Cu-K-Sm/γ-Al2O3 catalyst with excellent catalytic performance. Catalysis Today, 2018, 307, 286-292.	2.2	19
80	Surfactantâ€Assisted Stabilization of Au Colloids on Solids for Heterogeneous Catalysis. Angewandte Chemie, 2017, 129, 4565-4569.	1.6	18
81	Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Metals, 2019, 38, 107-114.	3.6	18
82	Ambient Temperature NO Adsorber Derived from Pyrolysis of Co-MOF(ZIF-67). ACS Omega, 2019, 4, 9542-9551.	1.6	18
83	Spherical Ni Nanoparticles Supported by Nanosheet-Assembled Al ₂ O ₃ for Dry Reforming of CH ₄ : Elucidating the Induction Period and Its Excellent Resistance to Coking. ACS Applied Materials & Interfaces, 2021, 13, 58605-58618.	4.0	18
84	Role of chlorohydrocarbon in increasing selectivity of propylene oxide over Ag–Y2O3–K2O/α-Al2O3 catalyst for epoxidation of propylene by molecular oxygen. Journal of Molecular Catalysis A, 2011, 342-343, 30-34.	4.8	17
85	Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 190, 17-25.	2.2	17
86	An efficient Cu-K-La/γ-Al2O3 catalyst for catalytic oxidation of hydrogen chloride to chlorine. Applied Catalysis B: Environmental, 2015, 164, 483-487.	10.8	17
87	Highly efficient cobalt-doped carbon nitride polymers for solvent-free selective oxidation of cyclohexane. Green Energy and Environment, 2017, 2, 142-150.	4.7	17
88	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	2.1	16
89	Facile synthesis of highly thermal-stable doped alumina with high surface area by low temperature solid-state reaction. Powder Technology, 2017, 315, 22-30.	2.1	15
90	Deoxygenation of coal bed methane on LaCoO ₃ perovskite catalyst: the structure evolution and catalytic performance. RSC Advances, 2017, 7, 15211-15221.	1.7	15

#	Article	IF	CITATIONS
91	Mechanochemically Assisted Synthesis of Ruthenium Clusters Embedded in Mesoporous Carbon for an Efficient Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 2719-2725.	1.7	15
92	Elimination of NO pollutant in semi-enclosed spaces over sodium-promoted cobalt oxyhydroxide (CoOOH) by oxidation and adsorption mechanism. Applied Catalysis B: Environmental, 2020, 279, 119404.	10.8	15
93	Catalytic combustion of vinyl chloride emissions over Co3O4 catalysts with different crystallite sizes. Rare Metals, 2021, 40, 817-827.	3.6	15
94	Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation. Microporous and Mesoporous Materials, 2012, 148, 131-136.	2.2	14
95	Gas-phase epoxidation of propylene by molecular oxygen over Ag-Cu-Cl/BaCO3 catalyst: Effects of Cu and Cl loadings. Chinese Journal of Catalysis, 2017, 38, 65-72.	6.9	14
96	Immobilization of penicillin G acylase on paramagnetic polymer microspheres with epoxy groups. Chinese Journal of Catalysis, 2018, 39, 47-53.	6.9	14
97	Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Applied Catalysis A: General, 2021, 628, 118398.	2.2	14
98	Low-temperature catalytic combustion of trichloroethylene over MnO -CeO2 mixed oxide catalysts. Journal of Rare Earths, 2023, 41, 523-530.	2.5	14
99	Epoxidation of vinyl functionalized cubic Ia3d mesoporous silica for immobilization of penicillin G acylase. Chinese Journal of Catalysis, 2014, 35, 1709-1715.	6.9	13
100	Ball Milling-Assisted Synthesis of Ultrasmall Ruthenium Phosphide for Efficient Hydrogen Evolution Reaction. Catalysts, 2019, 9, 240.	1.6	13
101	Enhanced activity for aerobic oxidative of alcohols over manganese oxides stimulated with interstitial nitrogen doping. Green Synthesis and Catalysis, 2021, 2, 38-44.	3.7	13
102	Jahn-Teller distortion assisted interstitial nitrogen engineering: enhanced oxygen dehydrogenation activity of N-doped MnxCo3â^'xO4 hierarchical micro-nano particles. Nano Research, 2021, 14, 2637-2643.	5.8	13
103	Ambient Temperature Formaldehyde Oxidation on the Pt/Na-ZSM-5 Catalyst: Tuning Adsorption Capacity and the Pt Chemical State. Industrial & amp; Engineering Chemistry Research, 2021, 60, 7132-7144.	1.8	13
104	The effect of preparation method on the activities of Pd–Fe–Ox/Al2O3 catalysts for CO oxidation. Journal of Materials Science, 2011, 46, 5639-5644.	1.7	12
105	Gas-phase hydrogenation of maleic anhydride to γ-butyrolactone over Cu-CeO2-Al2O3 catalyst at atmospheric pressure: Effects of the residual sodium and water in the catalyst precursor. Journal of Molecular Catalysis A, 2014, 395, 392-397.	4.8	12
106	Robust nanosheet-assembled Al ₂ O ₃ -supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. New Journal of Chemistry, 2021, 45, 21750-21762.	1.4	12
107	Effect of promoters on Cu–ZnO–SiO2 catalyst for gas-phase hydrogenation of maleic anhydride to γ-butyrolactone at atmospheric pressure. Journal of Molecular Catalysis A, 2014, 392, 1-7.	4.8	11
108	One-pot synthesis of aldehyde-functionalized mesoporous silica-Fe3O4 nanocomposites for immobilization of penicillin G acylase. Microporous and Mesoporous Materials, 2014, 197, 1-7.	2.2	11

#	Article	IF	CITATIONS
109	Al2O3 supported hybrid Pd CeO2 colloidal spheres and its enhanced catalytic performances for methane combustion. Journal of Rare Earths, 2019, 37, 714-719.	2.5	11
110	The effects of the presence of metal Fe in the CO oxidation over Ir/FeOx catalyst. Catalysis Communications, 2015, 61, 83-87.	1.6	10
111	Optimizing the structural configuration of FePt-FeOx nanoparticles at the atomic scale by tuning the post-synthetic conditions. Nano Energy, 2019, 55, 441-446.	8.2	10
112	Enhanced catalytic performance for selective oxidation of propene with O2 over bimetallic Au–Cu/SiO2 catalysts. Rare Metals, 2021, 40, 1056-1066.	3.6	10
113	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	2.5	10
114	Effect of KCl on the performance of Cu-K-La/Ĵ³-Al2O3 catalyst for HCl oxidation. Chinese Journal of Catalysis, 2014, 35, 1359-1363.	6.9	9
115	Catalytic wet oxidation of N,N-dimethyl formamide over ruthenium supported on CeO2 and Ce0.7Zr0.3O2 catalysts. Journal of Rare Earths, 2019, 37, 265-272.	2.5	9
116	Immobilization of penicillin G acylase on paramagnetic aldehyde-functionalized mesostructured cellular foams. Enzyme and Microbial Technology, 2014, 60, 32-39.	1.6	8
117	Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1154.	1.6	8
118	Nickel oxide regulating surface oxygen to promote formaldehyde oxidation on manganese oxide catalysts. Catalysis Science and Technology, 2021, 11, 7110-7124.	2.1	7
119	Si-doped Al2O3 nanosheet supported Pd for catalytic combustion of propane: effects of Si doping on morphology, thermal stability, and water resistance. Environmental Science and Pollution Research, 2021, 28, 56480-56490.	2.7	7
120	Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Metals, 2022, 41, 3060-3068.	3.6	7
121	Understanding the role of tungsten on Pt/CeO2 for vinyl chloride catalytic combustion. Journal of Rare Earths, 2022, 40, 1462-1470.	2.5	6
122	Comparison study of the effect of CeO ₂ -based carrier materials on the total oxidation of CO, methane, and propane over RuO ₂ . Catalysis Science and Technology, 2021, 11, 6839-6853.	2.1	6
123	Regulating the Spatial Distribution of Ru Nanoparticles on CeO ₂ Support for Enhanced Propane Oxidation. ACS Applied Nano Materials, 2022, 5, 3937-3945.	2.4	6
124	Aldehydepropyl-functionalized mesostructured cellular foams: Efficient supports for immobilization of penicillin G acylase. Journal of Molecular Catalysis B: Enzymatic, 2014, 105, 111-117.	1.8	5
125	Insight into the Surface-Tuned Activity and Cl ₂ /HCl Selectivity in the Catalytic Oxidation of Vinyl Chloride over Co ₃ O ₄ (110) versus (001): A DFT Study. Journal of Physical Chemistry C, 2021, 125, 16975-16983.	1.5	4
126	Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts, 2022, 12, 471.	1.6	4

#	Article	IF	CITATIONS
127	Pressure control as an effective method to modulate aggregative growth of nanoparticles. Rare Metals, 2021, 40, 1808-1816.	3.6	3
128	A new strategy to improve catalytic activity for chlorinated volatile organic compounds oxidation over cobalt oxide: Introduction of strontium carbonate. Journal of the Indian Chemical Society, 2021, 98, 100116.	1.3	3
129	Improvement of the Preparation Method for Polymer Support with Epoxy Groups and Immobilization of Penicillin G Acylase. Chinese Journal of Catalysis, 2010, 31, 586-590.	6.9	3
130	Supported Ru _x Ir _{1â€x} O ₂ Mixed Oxides Catalysts for Propane Combustion: Resistance Against Water Poisoning. ChemCatChem, 2022, 14, .	1.8	3