Jonatan Barrera-Chimal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2735459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mineralocorticoid receptor antagonists in diabetic kidney disease — mechanistic and therapeutic effects. Nature Reviews Nephrology, 2022, 18, 56-70.	4.1	87
2	The mineralocorticoid receptor in chronic kidney disease. British Journal of Pharmacology, 2022, 179, 3152-3164.	2.7	13
3	Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annual Review of Physiology, 2022, 84, 585-610.	5.6	31
4	Hepatocyte growth factor reverses cholemic nephropathy associated with α-naphthylisothiocyanate-induced cholestasis in mice. Life Sciences, 2022, 295, 120423.	2.0	1
5	Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney International Supplements, 2022, 12, 12-18.	4.6	16
6	The non-steroidal mineralocorticoid receptor antagonist finerenone is a novel therapeutic option for patients with Type 2 diabetes and chronic kidney disease. Clinical Science, 2022, 136, 1005-1017.	1.8	5
7	Oxidized Albumin as a Mediator of Kidney Disease. Antioxidants, 2021, 10, 404.	2.2	14
8	Editorial: Kidney and Distant Organ Crosstalk in Health and Disease. Frontiers in Physiology, 2021, 12, 712535.	1.3	1
9	Early inflammatory changes and CC chemokine ligandâ€8 upregulation in the heart contribute to uremic cardiomyopathy. FASEB Journal, 2021, 35, e21761.	0.2	5
10	Chronic Kidney Disease Induced by Cisplatin, Folic Acid and Renal Ischemia Reperfusion Induces Anemia and Promotes GATA-2 Activation in Mice. Biomedicines, 2021, 9, 769.	1.4	10
11	MR (Mineralocorticoid Receptor) in Endothelial Cells: A Major Contributor in Pulmonary Arterial Hypertension Remodeling. Hypertension, 2021, 78, 466-468.	1.3	2
12	Mitochondrial Transplantation: Is It a Feasible Therapy to Prevent the Cardiorenal Side Effects of Cisplatin?. Future Pharmacology, 2021, 1, 3-26.	0.6	5
13	Renal fibrosis due to multiple cisplatin treatment is exacerbated by kinin B1 receptor antagonism. Brazilian Journal of Medical and Biological Research, 2021, 54, e11353.	0.7	2
14	Differentiation between emerging non-steroidal and established steroidal mineralocorticoid receptor antagonists: head-to-head comparisons of pharmacological and clinical characteristics. Expert Opinion on Investigational Drugs, 2021, 30, 1141-1157.	1.9	26
15	Vascular and inflammatory mineralocorticoid receptors in kidney disease. Acta Physiologica, 2020, 228, e13390.	1.8	7
16	PPAR-α Deletion Attenuates Cisplatin Nephrotoxicity by Modulating Renal Organic Transporters MATE-1 and OCT-2. International Journal of Molecular Sciences, 2020, 21, 7416.	1.8	24
17	Physical Exercise Exacerbates Acute Kidney Injury Induced by LPS via Toll-Like Receptor 4. Frontiers in Physiology, 2020, 11, 768.	1.3	7
18	HGF induces protective effects in α-naphthylisothiocyanate-induced intrahepatic cholestasis by counteracting oxidative stress. Biochemical Pharmacology, 2020, 174, 113812.	2.0	13

#	Article	IF	CITATIONS
19	Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets. Diabetes, Obesity and Metabolism, 2020, 22, 16-31.	2.2	91
20	Delayed spironolactone administration prevents the transition from acute kidney injury to chronic kidney disease through improving renal inflammation. Nephrology Dialysis Transplantation, 2019, 34, 794-801.	0.4	35
21	Spironolactone reduces oxidative stress in living donor kidney transplantation: a randomized controlled trial. American Journal of Physiology - Renal Physiology, 2019, 317, F519-F528.	1.3	14
22	The Absence of Endothelial Sodium Channel α (αENaC) Reduces Renal Ischemia/Reperfusion Injury. International Journal of Molecular Sciences, 2019, 20, 3132.	1.8	17
23	Resilience to acute kidney injury in offspring of maternal protein restriction. American Journal of Physiology - Renal Physiology, 2019, 317, F1637-F1648.	1.3	7
24	Vascular mineralocorticoid receptor activation and disease. Experimental Eye Research, 2019, 188, 107796.	1.2	15
25	Reduced endothelial nitric oxide synthase activation contributes to cardiovascular injury during chronic kidney disease progression. American Journal of Physiology - Renal Physiology, 2019, 317, F275-F285.	1.3	29
26	Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opinion on Therapeutic Targets, 2019, 23, 495-509.	1.5	11
27	Mineralocorticoid receptor antagonists and kidney diseases: pathophysiological basis. Kidney International, 2019, 96, 302-319.	2.6	145
28	The myeloid mineralocorticoid receptor controlsÂinflammatory and fibrotic responses afterÂrenal injury via macrophage interleukin-4 receptor signaling. Kidney International, 2018, 93, 1344-1355.	2.6	109
29	The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. Journal of the American Society of Nephrology: JASN, 2018, 29, 1838-1848.	3.0	31
30	Short―and longâ€ŧerm administration of the nonâ€steroidal mineralocorticoid receptor antagonist finerenone opposes metabolic syndromeâ€related cardioâ€renal dysfunction. Diabetes, Obesity and Metabolism, 2018, 20, 2399-2407.	2.2	36
31	Benefit of Mineralocorticoid Receptor Antagonism in AKI: Role of Vascular Smooth Muscle Rac1. Journal of the American Society of Nephrology: JASN, 2017, 28, 1216-1226.	3.0	68
32	HSP72 is an early biomarker to detect cisplatin and acetaminophen nephrotoxicity. Biomarkers, 2017, 22, 548-556.	0.9	10
33	Randomized Controlled Trial of Mineralocorticoid Receptor Blockade in Children with Chronic Kidney Allograft Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 1291-1300.	2.2	19
34	Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Protects Against Acute Kidney Injury–Mediated Chronic Kidney Disease. Hypertension, 2017, 69, 870-878.	1.3	92
35	Subâ€chronic exposure to fluoride impacts the response to a subsequent nephrotoxic treatment with gentamicin. Journal of Applied Toxicology, 2016, 36, 309-319.	1.4	10
36	Mineralocorticoid Receptor Antagonism: A Promising Therapeutic Approach to Treat Ischemic AKI. Nephron, 2016, 134, 10-13.	0.9	7

#	Article	IF	CITATIONS
37	AT1 receptor antagonism before ischemia prevents the transition of acute kidney injury to chronic kidney disease. Kidney International, 2016, 89, 363-373.	2.6	77
38	Sulfenic Acid Modification of Endothelin B Receptor is Responsible for the Benefit of a Nonsteroidal Mineralocorticoid Receptor Antagonist in Renal Ischemia. Journal of the American Society of Nephrology: JASN, 2016, 27, 398-404.	3.0	50
39	Mild ischemic Injury Leads to Long-Term Alterations in the Kidney: Amelioration by Spironolactone Administration. International Journal of Biological Sciences, 2015, 11, 892-900.	2.6	34
40	Heat shock protein 72 (Hsp72) specific induction and temporal stability in urine samples as a reliable biomarker of acute kidney injury (AKI). Biomarkers, 2015, 20, 453-459.	0.9	16
41	Urinary neutrophil gelatinase-associated lipocalin predicts graft loss after acute kidney injury in kidney transplant. Biomarkers, 2014, 19, 63-69.	0.9	9
42	Intra-renal transfection of heat shock protein 90 alpha or beta (Hsp90Â or Hsp90Â) protects against ischemia/reperfusion injury. Nephrology Dialysis Transplantation, 2014, 29, 301-312.	0.4	15
43	Tubular urinary biomarkers do not identify aetiology of acute kidney injury in kidney transplant recipients. Nephrology, 2014, 19, 352-358.	0.7	14
44	Hsp72 Is a Novel Biomarker to Predict Acute Kidney Injury in Critically Ill Patients. PLoS ONE, 2014, 9, e109407.	1.1	26
45	Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations. Toxicology and Applied Pharmacology, 2013, 272, 888-894.	1.3	30
46	Mineralocorticoid Receptor Blockade Reduced Oxidative Stress in Renal Transplant Recipients: A Double-Blind, Randomized Pilot Study. American Journal of Nephrology, 2013, 37, 481-490.	1.4	35
47	Spironolactone prevents chronic kidney disease caused by ischemic acute kidney injury. Kidney International, 2013, 83, 93-103.	2.6	96
48	The Authors Reply:. Kidney International, 2013, 84, 415-416.	2.6	0
49	Recovery from ischemic acute kidney injury by spironolactone administration. Nephrology Dialysis Transplantation, 2012, 27, 3160-3169.	0.4	55
50	Are recently reported biomarkers helpful for early and accurate diagnosis of acute kidney injury?. Biomarkers, 2012, 17, 385-393.	0.9	30
51	Gene Expression Analysis Reveals the Cell Cycle and Kinetochore Genes Participating in Ischemia Reperfusion Injury and Early Development in Kidney. PLoS ONE, 2011, 6, e25679.	1.1	11
52	Hsp72 is an early and sensitive biomarker to detect acute kidney injury. EMBO Molecular Medicine, 2011, 3, 5-20.	3.3	56
53	Opposite Effect of Hsp90αand Hsp90β on eNOS Ability to Produce Nitric Oxide or Superoxide Anion in Human Embryonic Kidney Cells. Cellular Physiology and Biochemistry, 2010, 26, 657-668.	1.1	33
54	Potential Benefit of Mineralocorticoid Receptor Antagonists in Kidney Diseases. , 0, , .		0