Alain Ads Da Silva Morais

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/27351/publications.pdf

Version: 2024-02-01

30 papers 1,021 citations

16 h-index 591227 27 g-index

32 all docs 32 docs citations

times ranked

32

2043 citing authors

#	Article	IF	CITATIONS
1	Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. Acta Biomaterialia, 2022, 143, 282-294.	4.1	13
2	PAMAM dendrimers functionalised with an anti-TNF \hat{l}_{\pm} antibody and chondroitin sulphate for treatment of rheumatoid arthritis. Materials Science and Engineering C, 2021, 121, 111845.	3.8	21
3	Horseradish Peroxidaseâ€Crosslinked Calciumâ€Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research. Macromolecular Bioscience, 2021, 21, e2000425.	2.1	9
4	Methacrylated Gellan Gum/Poly- <scp>l</scp> -lysine Polyelectrolyte Complex Beads for Cell-Based Therapies. ACS Biomaterials Science and Engineering, 2021, 7, 4898-4913.	2.6	8
5	Advanced Biomaterials and Processing Methods for Liver Regeneration: Stateâ€ofâ€theâ€Art and Future Trends. Advanced Healthcare Materials, 2020, 9, e1901435.	3.9	36
6	Biomaterials and Microfluidics for Liver Models. Advances in Experimental Medicine and Biology, 2020, 1230, 65-86.	0.8	3
7	Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering. Bio-Design and Manufacturing, 2019, 2, 225-241.	3.9	8
8	Self-mineralizing Ca-enriched methacrylated gellan gum beads for bone tissue engineering. Acta Biomaterialia, 2019, 93, 74-85.	4.1	51
9	Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Materials Today Communications, 2019, 19, 506-512.	0.9	36
10	<i>In vitro</i> and <i>in vivo</i> performance of methacrylated gellan gum hydrogel formulations for cartilage repair*. Journal of Biomedical Materials Research - Part A, 2018, 106, 1987-1996.	2.1	37
11	Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 2018, 72, 167-181.	4.1	93
12	Clinical Trials and Management of Osteochondral Lesions. Advances in Experimental Medicine and Biology, 2018, 1058, 391-413.	0.8	10
13	Tunable Enzymatically Crossâ€Linked Silk Fibroin Tubular Conduits for Guided Tissue Regeneration. Advanced Healthcare Materials, 2018, 7, e1800186.	3.9	32
14	Injectable gellan-gum/hydroxyapatite-based bilayered hydrogel composites for osteochondral tissue regeneration. Applied Materials Today, 2018, 12, 309-321.	2.3	38
15	Small Animal Models. Advances in Experimental Medicine and Biology, 2018, 1059, 423-439.	0.8	17
16	Posterior talar process as a suitable cell source for treatment of cartilage and osteochondral defects of the talus. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1949-1962.	1.3	6
17	Silk-based anisotropical 3D biotextiles for bone regeneration. Biomaterials, 2017, 123, 92-106.	5.7	48
18	Cell Culture Methods. , 2017, , 619-635.		0

#	Article	IF	CITATIONS
19	Cartilage Tissue Engineering and Regenerative Strategies. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 73-96.	0.7	1
20	Management of knee osteoarthritis. Current status and future trends. Biotechnology and Bioengineering, 2017, 114, 717-739.	1.7	74
21	Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels. Scientific Reports, 2016, 6, 31037.	1.6	62
22	Development of hepatic fibrosis occurs normally in AMPK-deficient mice. Clinical Science, 2010, 118, 411-420.	1.8	27
23	Prevention of steatohepatitis by pioglitazone: Implication of adiponectin-dependent inhibition of SREBP-1c and inflammation. Journal of Hepatology, 2009, 50, 489-500.	1.8	34
24	Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes <i>in vitro</i> and <i>in vivo</i> in rats. Clinical Science, 2008, 114, 73-83.	1.8	10
25	Peroxisome proliferated-activated receptor \hat{I}^3 ligand, Pioglitazone, does not prevent hepatic fibrosis in mice. International Journal of Molecular Medicine, 2007, , .	1.8	11
26	Insulin resistance in hepatocytes and sinusoidal liver cells: Mechanisms and consequences. Journal of Hepatology, 2007, 47, 142-156.	1.8	299
27	Peroxisome proliferated-activated receptor gamma ligand, Pioglitazone, does not prevent hepatic fibrosis in mice. International Journal of Molecular Medicine, 2007, 19, 105-12.	1.8	26
28	Gellan-gum coated gold nanorods: A new tool for biomedical applications. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	1
29	Development & Development amp; performance assessment of a new ATMP for cartilage tissue engineering. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	O
30	Finely tuned fiber-based porous structures for bone tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 0, 4, .	2.0	O