Lidia Okrasa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2734776/publications.pdf Version: 2024-02-01

Ι ΙΠΙΑ ΟΚΡΑςΑ

#	Article	IF	CITATIONS
1	Structural Control of Poly(methyl methacrylate)-g-poly(dimethylsiloxane) Copolymers Using Controlled Radical Polymerization:  Effect of the Molecular Structure on Morphology and Mechanical Properties. Macromolecules, 2003, 36, 4772-4778.	4.8	95
2	Homologous Series of Dendronized Polymethacrylates with a Methyleneoxycarbonyl Spacer between the Backbone and Dendritic Side Chain:Â Synthesis, Characterization, and Some Bulk Properties. Journal of the American Chemical Society, 2004, 126, 6658-6666.	13.7	93
3	Linear-Hyperbranched Block Copolymers Consisting of Polystyrene and Dendritic Poly(carbosilane) Block. Macromolecules, 2006, 39, 971-977.	4.8	54
4	Aromatic polyamides with pendent acetoxybenzamide groups and thin films made therefrom. European Polymer Journal, 2003, 39, 725-738.	5.4	53
5	Investigation of the polyurethane chain length influence on the molecular dynamics in networks crosslinked by hyperbranched polyester. Polymer, 2006, 47, 7207-7215.	3.8	42
6	Copoly(1,3,4-oxadiazole-ether)s containing phthalide groups and thin films made therefrom. Polymer, 2008, 49, 681-690.	3.8	41
7	Properties of well-defined alternating and random copolymers of methacrylates and styrene prepared by controlled/living radical polymerization. Journal of Polymer Science Part A, 2005, 43, 3440-3446.	2.3	37
8	Molecular dynamics of linear and hyperbranched polyurethanes and their blends. Journal of Non-Crystalline Solids, 2005, 351, 2753-2758.	3.1	34
9	Polyurethane networks based on hyperbranched polyesters: Synthesis and molecular relaxations. Journal of Non-Crystalline Solids, 2005, 351, 2735-2741.	3.1	34
10	Molecular dynamics in polyester- or polyether-urethane networks based on different diisocyanates. Polymer, 2008, 49, 2662-2668.	3.8	32
11	Molecular relaxation in anisotropic composites based on (hydroxypropyl)cellulose and acrylic polymer. Polymer, 2001, 42, 3817-3825.	3.8	30
12	Synthesis and solid state structures of macromolecular cylindrical brushes with varying side chain length. Polymer, 2004, 45, 4009-4015.	3.8	27
13	Studies of the molecular dynamics in polyurethane networks with hyperbranched crosslinkers of different coordination numbers. Journal of Applied Polymer Science, 2007, 105, 89-98.	2.6	26
14	Silica/polyimide-polydimethylsiloxane hybrid films. Thermal and electrical properties. Macromolecular Research, 2011, 19, 250-260.	2.4	25
15	Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water—molecular interactions and states of water. Colloid and Polymer Science, 2014, 292, 1775-1784.	2.1	25
16	Thermal and electrical properties of nitrileâ€containing polyimide/BaTiO ₃ composite films. Polymer Composites, 2011, 32, 846-855.	4.6	24
17	Structural, AC conductivity, impedance and dielectric study of nanocrystalline MFe2O4 (M = Mg, Co	or) Tj_ETQq1 	1 0,784314 22
18	Morphology and thermomechanical properties of well-defined polyethylene- graft -poly(n -butyl) Tj ETQq0 0 0	rgBT /Overlo	ock 10 Tf 50 6

844-853.

LIDIA OKRASA

#	Article	IF	CITATIONS
19	Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles. European Polymer Journal, 2009, 45, 3317-3325.	5.4	20
20	The â€~wet dog' effect in polymers as seen by thermoluminescence. Polymer, 2004, 45, 6027-6035.	3.8	18
21	Modification of epoxy–anhydride thermosets with a hyperbranched poly(ester amide). II. Thermal, dynamic mechanical, and dielectric properties and thermal reworkability. Journal of Applied Polymer Science, 2013, 128, 4001-4013.	2.6	17
22	Physical aging of atactic polystyrene as seen by dielectric relaxational and low-frequency vibrational Raman spectroscopies. Journal of Non-Crystalline Solids, 2005, 351, 2593-2598.	3.1	16
23	Studies of molecular dynamics in polyurethane networks with hyperbranched polyester Boltorn®H30 as a crosslinker. Journal of Non-Crystalline Solids, 2007, 353, 4293-4297.	3.1	15
24	Polyimideâ€Polydimethylsiloxane Copolymers. Evaluation of the Thermal and Electrical Properties. Journal of Macromolecular Science - Pure and Applied Chemistry, 2007, 44, 1069-1078.	2.2	15
25	Poly(ether-imide) and poly(ether-imide)-polydimethyl-siloxane containing isopropylidene groups. Polymer Bulletin, 2008, 59, 825-832.	3.3	15
26	The effect of zeolite L content on dielectric behavior and thermal stability of polyimide thin films. Journal of Materials Science, 2012, 47, 6354-6365.	3.7	15
27	Electrical properties of polyimide composite films containing TiO ₂ nanotubes. Polymer Composites, 2017, 38, 2584-2593.	4.6	14
28	Effect of Zinc Oxide Modified Silica Particles on the Molecular Dynamics of Carboxylated Acrylonitrile-Butadiene Rubber Composites. Polymers, 2017, 9, 645.	4.5	14
29	Liquid crystal epoxy resins based on biphenyl group cured with aromatic amines - studied by dielectric spectroscopy. Journal of Polymer Research, 2013, 20, 1.	2.4	13
30	Thermal and electrical properties of copoly(1,3,4â€oxadiazoleâ€ethers) containing fluorene groups. Journal of Applied Polymer Science, 2009, 113, 383-391.	2.6	11
31	Radiation-induced synthesis of thermo-sensitive, gradient hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate. Radiation Physics and Chemistry, 2014, 100, 23-31.	2.8	11
32	Evolution of high-temperature molecular relaxations in poly(2-(2-methoxyethoxy)ethyl methacrylate) upon network formation. Colloid and Polymer Science, 2015, 293, 1357-1367.	2.1	11
33	Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl) Tj ETQq1 1 0.7	784314 rgB	T /Qyerlock 1
34	α-Relaxation processes in the composites of LC-cellulose derivatives. Journal of Non-Crystalline Solids, 1998, 235-237, 658-663.	3.1	9
35	Silicon-containing heterocyclic polymers and thin films made therefrom. Journal of Applied Polymer Science, 2006, 102, 3062-3068.	2.6	9
36	Multiferroic and magneto-dielectric properties in Fe doped BaTiO3. Journal of Materials Science: Materials in Electronics, 2018, 29, 11215-11228.	2.2	9

LIDIA OKRASA

#	Article	IF	CITATIONS
37	Polymer hybrid films based on silica and a poly(ether imide) containing phthalide groups. Polymer Engineering and Science, 2011, 51, 2304-2313.	3.1	8

 $_{38}$ Molecular relaxations in the composites of liquid crystalline cellulose derivatives with poly(acrylic) Tj ETQq0 0 0 rgBT $_{2.3}^{\prime}$ Overlock 10 Tf 50

39	Molecular relaxations in radiationally crosslinked poly(vinyl methyl ether) hydrogels. Journal of Non-Crystalline Solids, 2007, 353, 4536-4540.	3.1	6
40	Relaxation processes and intermolecular interactions in PVME hydrogels in sub-zero temperatures: Glass transition and pre-melting of ice. Polymer, 2012, 53, 161-168.	3.8	6
41	Mechanical and Electrical Properties of SomeSilicon-Containing Poly(Amide-Imide)s. Polymer-Plastics Technology and Engineering, 2006, 45, 143-148.	1.9	5
42	Dielectric investigations of organic–inorganic hybrid based on (2-hydroxypropyl) cellulose with nanosheet crystallites of quasi-TiO2. Journal of Non-Crystalline Solids, 2011, 357, 986-991.	3.1	5
43	Multiferroic properties of Ba0.995Fe0.005Ti0.995Mn0.005O3 synthesized by glycine assisted sol gel method. Journal of Materials Science: Materials in Electronics, 2018, 29, 7302-7310.	2.2	3
44	Epoxy matrix with triaromatic mesogenic unit in dielectric spectroscopy observation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 194, 102-110.	3.9	3
45	Impact of oligoether chain lengths on the relaxation processes in poly(oligo(ethylene glycol) methyl) Tj ETQq1 1 Journal of Physics and Chemistry of Solids, 2020, 140, 109359.	0.784314 4.0	rgBT /Over 3
46	<title>Formation of anisotropic polymer blend by photopolymerization of lyotropic LC-phase</title> . , 1995, , .		2
47	Mesomorphism and photocuring processes of (2-hydroxypropyl) cellulose cinnamate. , 2002, , .		2
48	Liquid crystalline (cyanoethylpropyl)cellulose and its optically anisotropic composites with acrylic polymers. Polymer, 2002, 43, 2417-2424.	3.8	2
49	<title>Liquid crystalline cellulose derivatives for thermally stable or reversible anisotropic polymer film</title> . , 1997, , .		1
50	The anisotropy of poly(acrylic acid) in composites with liquid crystalline cellulose derivatives as seen by low-frequency Raman spectroscopy. Polymer, 2000, 41, 751-755.	3.8	1
51	Dielectric relaxations in new liquid crystalline diepoxy monomer. , 2002, 4759, 321.		1
52	Stabilisation Effect of Calcium Ions on Polymer Network in Hydrogels Derived from a Lyotropic Phase of Hydroxypropylcellulose. Macromolecular Symposia, 2005, 222, 203-208.	0.7	1
53	Molecular dynamics of perfluorinated oligo and polyethers. Journal of Non-Crystalline Solids, 2010, 356, 556-559.	3.1	1
54	Polymer-stabilized liquid crystals system based on liquid crystalline cellulose derivatives. , 2000, , .		0