
Syed Fida Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2734619/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tribological evaluations of spark plasma sintered Mg–Ni composite. Tribology - Materials, Surfaces and Interfaces, 2022, 16, 110-118.	1.4	5
2	Ultrahigh strength ductile microalloyed steel with a very low yield ratio developed by quenching and partitioning heat treatment. Scientific Reports, 2022, 12, 7949.	3.3	2
3	Designing heterogeneous microstructured superior strength-ductility magnesium by blend-press-sinter powder metallurgy process. International Journal of Advanced Manufacturing Technology, 2021, 117, 1547-1555.	3.0	1
4	Metal Matrix Composite in Heat Sink Application: Reinforcement, Processing, and Properties. Materials, 2021, 14, 6257.	2.9	11
5	Heterogeneous Microstructure of Low-Carbon Microalloyed Steel and Mechanical Properties. Journal of Materials Engineering and Performance, 2020, 29, 7045-7051.	2.5	7
6	Effect of powder processing on microstructure and mechanical properties of a high-entropy Al24.2Si3.2Cu24.2Ti24.2Ni24.2 alloy. Philosophical Magazine Letters, 2020, 100, 171-180.	1.2	3
7	Extraordinary Strengthening of Magnesium by Solid-State Diffusion of Copper in Mg-0.5Cu Alloy. Jom, 2020, 72, 1597-1606.	1.9	7
8	Corrosion Behavior of Spark Plasma Sintered Alumina and Al2O3-SiC-CNT Hybrid Nanocomposite. Materials Research, 2020, 23, .	1.3	0
9	Metallurgical failure analysis of an exploded CO2 gas cylinder. Materialpruefung/Materials Testing, 2020, 62, 1085-1088.	2.2	1
10	Investigation on the Controlled Degradation and Invitro Mineralization of Carbon Nanotube Reinforced AZ31 Nanocomposite in Simulated Body Fluid. Metals and Materials International, 2019, 25, 105-116.	3.4	22
11	Mg6Zn0.4Ca0.5Cu alloy: Physically blended microalloyed lightweight alloy with significantly high strength and ductility. Journal of Alloys and Compounds, 2019, 787, 1015-1022.	5.5	2
12	Recent Advances and Future Prospects in Spark Plasma Sintered Alumina Hybrid Nanocomposites. Nanomaterials, 2019, 9, 1607.	4.1	20
13	Development of Gradient Concentrated Single-Phase Fine Mg-Zn Particles and Effect on Structure and Mechanical Properties. Journal of Engineering Materials and Technology, Transactions of the ASME, 2019, 141, .	1.4	7
14	Effect of Copper Nanoparticle on the High-Temperature Tensile Behavior of a Mg–Y \$\$_{2}hbox {O}_{3}\$\$ 2 O 3 Nanocomposite. Arabian Journal for Science and Engineering, 2018, 43, 4803-4810.	3.0	3
15	Development of tensile-compressive asymmetry free magnesium based composite using TiO ₂ nanoparticles dispersion. Journal of Materials Research, 2018, 33, 130-137.	2.6	10
16	Electrochemical Corrosion and In vitro Biocompatibility Performance of AZ31Mg/Al2O3 Nanocomposite in Simulated Body Fluid. Journal of Materials Engineering and Performance, 2018, 27, 3419-3428.	2.5	19
17	Processing, microstructure and mechanical properties of a TiO2 nanoparticles reinforced magnesium for biocompatible application. Metallurgical Research and Technology, 2017, 114, 214.	0.7	1
18	Microstructure and mechanical properties of nickel particle reinforced magnesium composite: impact of reinforcement introduction method. International Journal of Materials Research, 2017, 108, 185-191	0.3	2

Syed Fida Hassan

#	Article	IF	CITATIONS
19	Effect of TiO ₂ nanoparticles on the microstructure evolution and crystallographic texture in magnesium. Materialpruefung/Materials Testing, 2017, 59, 1014-1018.	2.2	1
20	Magnesium nanocomposite: increasing copperisation effect on high temperature tensile properties. Powder Metallurgy, 2016, 59, 66-72.	1.7	5
21	Magnesium nanocomposite: Effect of melt dispersion of different oxides nano particles. Journal of Materials Research, 2016, 31, 100-108.	2.6	10
22	Effect of increasingly metallized hybrid reinforcement on the wear mechanisms of magnesium nanocomposite. Bulletin of Materials Science, 2016, 39, 1101-1107.	1.7	9
23	Effect of copper nano particles on high temperature tensile behavior of Mg-Y2O3 nanocomposite. Metals and Materials International, 2015, 21, 588-592.	3.4	3
24	Study of Wear Mechanisms of a Novel Magnesium Based Hybrid Nanocomposite. Journal of Tribology, 2015, 137, .	1.9	13
25	Microstructure and Properties of Spark Plasma Sintered Aluminum Containing 1 wt.% SiC Nanoparticles. Metals, 2015, 5, 70-83.	2.3	33
26	Effect of hybrid reinforcement on the high temperature tensile behavior of magnesium nanocomposite. International Journal of Materials Research, 2015, 106, 1298-1302.	0.3	4
27	Matrix Structure Evolution and Nanoreinforcement Distribution in Mechanically Milled and Spark Plasma Sintered Al-SiC Nanocomposites. Materials, 2014, 7, 6748-6767.	2.9	27
28	Study of comparative effectiveness of thermally stable nanoparticles on high temperature deformability of wrought AZ31 alloy. Journal of Materials Research, 2014, 29, 1264-1269.	2.6	3
29	Effect of Carbon Nanotube on High-Temperature Formability of AZ31 Magnesium Alloy. Journal of Materials Engineering and Performance, 2014, 23, 2984-2991.	2.5	10
30	Cement particle induced failure of cold potable water copper plumbing. Engineering Failure Analysis, 2011, 18, 505-509.	4.0	3
31	Failure Analysis of Gearbox and Clutch Shaft from a Marine Engine. Journal of Failure Analysis and Prevention, 2010, 10, 393-398.	0.9	12
32	Hydrogen induced premature failure of massive cast medium carbon steel anchor fluke. Materials & Design, 2010, 31, 956-964.	5.1	4
33	Formability of Ti–29Nb–13Ta–4.6Zr Biomaterial at High Temperatures. Key Engineering Materials, 2010, 443, 620-625.	0.4	1
34	Micro-Engineering the Stressed Macro-Interface and Enhancing the Performance of Mg/Al Bimetal Macrocomposites. Materials Science Forum, 2009, 618-619, 221-225.	0.3	3
35	Energy Dissipation Studies of Mg-based Nanocomposites Using an Innovative Circle-fit Approach. Journal of Composite Materials, 2004, 38, 2037-2047.	2.4	7
36	Selective Enhancement of Tensile/Compressive Strength and Ductility of AZ31 Magnesium Alloy via Nano-Al ₂ 0 ₃ Reinforcement Integration Method Alteration. Materials Science Forum, 0, 618-619, 423-427.	0.3	5