Yuji Teramura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2734322/publications.pdf

Version: 2024-02-01

102 papers 4,384 citations

94433 37 h-index 63 g-index

104 all docs

104 docs citations

104 times ranked 4937 citing authors

#	Article	IF	Citations
1	Do Cryopreserved Mesenchymal Stromal Cells Display Impaired Immunomodulatory and Therapeutic Properties?. Stem Cells, 2014, 32, 2430-2442.	3.2	300
2	Are Therapeutic Human Mesenchymal Stromal Cells Compatible with Human Blood?. Stem Cells, 2012, 30, 1565-1574.	3.2	281
3	Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)–lipids in the cell membrane. Biomaterials, 2007, 28, 4818-4825.	11.4	208
4	Bioartificial pancreas. Advanced Drug Delivery Reviews, 2010, 62, 827-840.	13.7	167
5	Innate immunity activation on biomaterial surfaces: A mechanistic model and coping strategies. Advanced Drug Delivery Reviews, 2011, 63, 1042-1050.	13.7	163
6	Cell surface modification with polymers for biomedical studies. Soft Matter, 2010, 6, 1081.	2.7	141
7	Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO Journal, 2006, 25, 4215-4222.	7.8	133
8	Encapsulation of islets with ultra-thin polyion complex membrane through poly(ethylene) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	if 50 462 Td (
9	Behavior of synthetic polymers immobilized on a cell membrane. Biomaterials, 2008, 29, 1345-1355.	11.4	129
10	Dangerous liaisons: complement, coagulation, and kallikrein/kinin crossâ€ŧalk act as a linchpin in the events leading to thromboinflammation. Immunological Reviews, 2016, 274, 245-269.	6.0	124
11	Label-free immunosensing for α-fetoprotein in human plasma using surface plasmon resonance. Analytical Biochemistry, 2007, 365, 201-207.	2.4	117
12	Islets Surface Modification Prevents Blood-Mediated Inflammatory Responses. Bioconjugate Chemistry, 2008, 19, 1389-1395.	3.6	97
13	Surface plasmon resonance-based highly sensitive immunosensing for brain natriuretic peptide using nanobeads for signal amplification. Analytical Biochemistry, 2006, 357, 208-215.	2.4	93
14	Islet encapsulation with living cells for improvement of biocompatibility. Biomaterials, 2009, 30, 2270-2275.	11.4	93
15	Surface Modification of Islets With PEG-Lipid for Improvement of Graft Survival in Intraportal Transplantation. Transplantation, 2009, 88, 624-630.	1.0	90
16	Immobilization of urokinase on the islet surface by amphiphilic poly(vinyl alcohol) that carries alkyl side chains. Biomaterials, 2008, 29, 2878-2883.	11.4	81
17	Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers. Biomaterials, 2013, 34, 2683-2693.	11.4	74
18	Control of cell attachment through polyDNA hybridization. Biomaterials, 2010, 31, 2229-2235.	11.4	73

#	Article	IF	CITATIONS
19	Improvement of Graft Survival by Surface Modification With Poly(ethylene glycol)-Lipid and Urokinase in Intraportal Islet Transplantation. Transplantation, 2011, 91, 271-278.	1.0	65
20	Retention Dynamics of Amphiphilic Polymers PEG-Lipids and PVA-Alkyl on the Cell Surface. ACS Applied Materials & Samp; Interfaces, 2010, 2, 1514-1520.	8.0	62
21	Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene) Tj ETQq1 1 0.784314 rgB	T/Qverloc	k 10 Tf 50 61
22	Do ABO Blood Group Antigens Hamper the Therapeutic Efficacy of Mesenchymal Stromal Cells?. PLoS ONE, 2014, 9, e85040.	2.5	61
23	Hemostatic Effects of Phospholipid Vesicles Carrying Fibrinogen \hat{l}^3 Chain Dodecapeptide in Vitro and in Vivo. Bioconjugate Chemistry, 2005, 16, 1589-1596.	3.6	60
24	Prediction of inflammatory responses induced by biomaterials in contact with human blood using protein fingerprint from plasma. Biomaterials, 2015, 36, 55-65.	11.4	52
25	Autoregulation of thromboinflammation on biomaterial surfaces by a multicomponent therapeutic coating. Biomaterials, 2013, 34, 985-994.	11.4	50
26	Microencapsulation of Islets with Living Cells Using PolyDNA-PEG-Lipid Conjugate. Bioconjugate Chemistry, 2010, 21, 792-796.	3.6	49
27	Layer-by-layer co-immobilization of soluble complement receptor 1 and heparin on islets. Biomaterials, 2011, 32, 6487-6492.	11.4	49
28	Rolling properties of rGPlbî±-conjugated phospholipid vesicles with different membrane flexibilities on vWf surface under flow conditions. Biochemical and Biophysical Research Communications, 2002, 296, 765-770.	2.1	48
29	Islet Surface Modification with Urokinase through DNA Hybridization. Bioconjugate Chemistry, 2011, 22, 673-678.	3.6	40
30	Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles. Biomaterials, 2014, 35, 3688-3696.	11.4	40
31	Stable surface coating of silicone elastomer with phosphorylcholine and organosilane copolymer with cross-linking for repelling proteins. Colloids and Surfaces B: Biointerfaces, 2015, 134, 384-391.	5.0	40
32	Prolonged Oxygen-Carrying Ability of Hemoglobin Vesicles by Coencapsulation of Catalase in Vivo. Bioconjugate Chemistry, 2003, 14, 1171-1176.	3.6	39
33	Lectin-Tagged Fluorescent Polymeric Nanoparticles for Targeting of Sialic Acid on Living Cells. Biomacromolecules, 2014, 15, 2012-2018.	5.4	39
34	Cryopreserved Agarose-Encapsulated Islets As Bioartificial Pancreas: A Feasibility Study. Transplantation, 2009, 87, 29-34.	1.0	38
35	Conjugation of Von Willebrand Factor-Binding Domain of Platelet Glycoprotein Ibα to Size-Controlled Albumin Microspheres. Biomacromolecules, 2000, 1, 290-295.	5.4	37
36	Fibrinogen-Conjugated Albumin Polymers and Their Interaction with Platelets under Flow Conditions. Biomacromolecules, 2001, 2, 1192-1197.	5.4	37

#	Article	IF	Citations
37	Cells immobilized on patterns printed in DNA by an inkjet printer. Biomaterials, 2011, 32, 3596-3602.	11.4	37
38	Immobilization of soluble complement receptor 1 on islets. Biomaterials, 2011, 32, 4539-4545.	11.4	37
39	Cell surface modification with ssDNA–PEG–lipid for analysing intercellular interactions between different cells. Biomaterials, 2015, 48, 119-128.	11.4	37
40	Interaction of poly(ethylene glycol)-conjugated phospholipids with supported lipid membranes and their influence on protein adsorption. Science and Technology of Advanced Materials, 2016, 17, 677-684.	6.1	37
41	Function of fibrinogen \hat{I}^3 -chain dodecapeptide-conjugated latex beads under flow. Biochemical and Biophysical Research Communications, 2003, 312, 773-779.	2.1	36
42	Effect of Hb-Encapsulation with Vesicles on H2O2 Reaction and Lipid Peroxidation. Bioconjugate Chemistry, 2002, 13, 1302-1308.	3.6	35
43	Ratiometric fluorescence imaging of cell surface pH by poly(ethylene glycol)-phospholipid conjugated with fluorescein isothiocyanate. Scientific Reports, 2017, 7, 17484.	3.3	34
44	Thromboinflammation in Therapeutic Medicine. Advances in Experimental Medicine and Biology, 2015, 865, 3-17.	1.6	33
45	The non-invasive cell surface modification of hepatocytes with PEG-lipid derivatives. Biomaterials, 2012, 33, 821-828.	11.4	31
46	Complement inhibition in biomaterial- and biosurface-induced thromboinflammation. Seminars in Immunology, 2016, 28, 268-277.	5.6	31
47	Validation of an MPC Polymer Coating to Attenuate Surfaceâ€Induced Crosstalk between the Complement and Coagulation Systems in Whole Blood in In Vitro and In Vivo Models. Macromolecular Bioscience, 2019, 19, e1800485.	4.1	27
48	Immobilization of the soluble domain of human complement receptor 1 on agarose-encapsulated islets for the prevention of complement activation. Biomaterials, 2010, 31, 8847-8853.	11.4	26
49	Cell Adhesion Induced Using Surface Modification with Cell-Penetrating Peptide-Conjugated Poly(ethylene glycol)-Lipid: A New Cell Glue for 3D Cell-Based Structures. ACS Applied Materials & Amp; Interfaces, 2017, 9, 244-254.	8.0	26
50	Hemostatic effects of polymerized albumin particles bearing rGPIa/IIa in thrombocytopenic mice. Biochemical and Biophysical Research Communications, 2003, 306, 256-260.	2.1	25
51	Systemic Administration of Hemoglobin Vesicle Elevates Tumor Tissue Oxygen Tension and Modifies Tumor Response to Irradiation. Journal of Surgical Research, 2009, 151, 48-54.	1.6	25
52	Harnessing hyaluronic acid-based nanoparticles for combination therapy: A novel approach for suppressing systemic inflammation and to promote antitumor macrophage polarization. Carbohydrate Polymers, 2021, 254, 117291.	10.2	25
53	A novel strategy to tag matrix metalloproteinases-positive cells for in vivo imaging of invasive and metastatic activity of tumor cells. Journal of Controlled Release, 2010, 144, 109-114.	9.9	24
54	Immobilization of anticoagulant-loaded liposomes on cell surfaces by DNA hybridization. Biomaterials, 2011, 32, 7971-7977.	11.4	24

#	Article	IF	CITATIONS
55	Heparinization of cell surfaces with short peptide-conjugated PEG-lipid regulates thromboinflammation in transplantation of human MSCs and hepatocytes. Acta Biomaterialia, 2016, 35, 194-205.	8.3	24
56	Transplantation of Co-aggregates of Sertoli Cells and Islet Cells Into Liver Without Immunosuppression. Transplantation, 2014, 97, 287-293.	1.0	23
57	A human whole-blood model to study the activation of innate immunity system triggered by nanoparticles as a demonstrator for toxicity. Science and Technology of Advanced Materials, 2019, 20, 688-698.	6.1	23
58	Promotion of cell membrane fusion by cell-cell attachment through cell surface modification with functional peptide-PEG-lipids. Biomaterials, 2020, 253, 120113.	11.4	23
59	Highly efficient cryopreservation of human induced pluripotent stem cells using a dimethyl sulfoxide-free solution. International Journal of Developmental Biology, 2011, 55, 305-311.	0.6	22
60	Influence of molecular weight of PEG chain on interaction between streptavidin and biotin–PEG-conjugated phospholipids studied with QCM-D. Acta Biomaterialia, 2016, 30, 135-143.	8.3	22
61	The role and regulation of complement activation as part of the thromboinflammation elicited in cell therapies. Molecular Immunology, 2014, 61, 185-190.	2.2	21
62	Development of a micro biochip integrated traveling wave micropumps and surface plasmon resonance imaging sensors. Microsystem Technologies, 2007, 13, 1391-1396.	2.0	19
63	Current status of ischemic stroke treatment: From thrombolysis to potential regenerative medicine. Regenerative Therapy, 2021, 18, 408-417.	3.0	19
64	Cryopreservation of primate embryonic stem cells with chemically-defined solution without Me2SO. Cryobiology, 2010, 60, 159-164.	0.7	18
65	Cell Surface Engineering for Regulation of Immune Reactions in Cell Therapy. Advances in Experimental Medicine and Biology, 2015, 865, 189-209.	1.6	17
66	Immobilization of Sertoli cells on islets of Langerhans. Biomaterials Science, 2013, 1, 315-321.	5.4	16
67	Nano-structural comparison of 2-methacryloyloxyethyl phosphorylcholine- and ethylene glycol-based surface modification for preventing protein and cell adhesion. Colloids and Surfaces B: Biointerfaces, 2017, 159, 655-661.	5.0	16
68	Rapid and highly efficient capture and release of cancer cells using polymeric microfibers immobilized with enzyme-cleavable peptides. Acta Biomaterialia, 2018, 67, 32-41.	8.3	16
69	Cellular Response to Non-contacting Nanoscale Sublayer: Cells Sense Several Nanometer Mechanical Property. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10710-10716.	8.0	14
70	Potential of Cell Surface Engineering with Biocompatible Polymers for Biomedical Applications. Langmuir, 2020, 36, 12088-12106.	3.5	14
71	Modification of human MSC surface with oligopeptideâ€PEGâ€lipids for selective binding to activated endothelium. Journal of Biomedical Materials Research - Part A, 2019, 107, 1779-1792.	4.0	13
72	Kinetic analyses of disulfide formation between thiol groups attached to linear poly(acrylamide). Journal of Polymer Science Part A, 2011, 49, 671-679.	2.3	12

#	Article	IF	CITATIONS
73	Gene transfer device utilizing micron-spiked electrodes produced by the self-organization phenomenon of Fe-alloy. Lab on A Chip, 2008, 8, 1104.	6.0	10
74	Synthesis of poly(2-methacryloyloxyethyl phosphorylcholine)-conjugated lipids and their characterization and surface properties of modified liposomes for protein interactions. Biomaterials Science, 2021, 9, 5854-5867.	5.4	10
75	Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration. Science and Technology of Advanced Materials, 2016, 17, 807-815.	6.1	9
76	Enhancing Detection Sensitivity of ZnO-Based Infrared Plasmonic Sensors Using Capped Dielectric Ga ₂ O ₃ Layers for Real-Time Monitoring of Biological Interactions. ACS Applied Bio Materials, 2020, 3, 6331-6342.	4.6	9
77	Effect of liposome surface modification with water-soluble phospholipid polymer chain-conjugated lipids on interaction with human plasma proteins. Journal of Materials Chemistry B, 2022, 10, 2512-2522.	5.8	9
78	Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells. Biomacromolecules, 2021, 22, 1980-1989.	5.4	9
79	Optimization of Islet Microencapsulation with Thin Polymer Membranes for Long-Term Stability. Micromachines, 2019, 10, 755.	2.9	8
80	Quantitative evaluation of the impact of artificial cell adhesion via DNA hybridization on E-cadherin-mediated cell adhesion. APL Bioengineering, 2020, 4, 016103.	6.2	8
81	A Collagen-Binding Mimetic of Neural Cell Adhesion Molecule. Bioconjugate Chemistry, 2008, 19, 1119-1123.	3.6	7
82	Cell Surface Functionalization with Heparinâ€Conjugated Lipid to Suppress Blood Activation. Advanced Functional Materials, 2021, 31, 2008167.	14.9	7
83	A hybrid of cells and pancreatic islets toward a new bioartificial pancreas. Regenerative Therapy, 2016, 3, 68-74.	3.0	6
84	Influence of cell adhesive molecules attached onto PEG-lipid-modified fluid surfaces on cell adhesion. Colloids and Surfaces B: Biointerfaces, 2019, 175, 375-383.	5.0	6
85	Identification of Metal-Binding Peptides and Their Conjugation onto Nanoparticles of Superparamagnetic Iron Oxides and Liposomes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24623-24634.	8.0	5
86	Exogenous Cell Surface Modification with Cell Penetrating Peptide-Conjugated Lipids Causes Spontaneous Cell Adhesion. ACS Applied Bio Materials, 2021, 4, 4598-4606.	4.6	5
87	Induction of Spontaneous Liposome Adsorption by Exogenous Surface Modification with Cell-Penetrating Peptide-Conjugated Lipids. Langmuir, 2021, 37, 9711-9723.	3.5	5
88	Quartz Crystal Microbalance., 2018,, 509-520.		4
89	Poly(2-aminoethyl methacrylate)-based polyampholyte brush surface with carboxylic groups to improve blood compatibility. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 679-693.	3.5	4
90	Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly(ether ether ketone) substrate. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111021.	5.0	4

#	Article	IF	CITATIONS
91	Synthesis of Multiacyl Poly(ethylene glycol) for the Conjugation of Cytochrome c to Phospholipid Vesicle. Bioconjugate Chemistry, 2000, 11, 815-821.	3.6	3
92	Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromolecular Bioscience, 2020, 20, 2000114.	4.1	3
93	Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. Journal of Materials Chemistry B, 2021, , .	5.8	3
94	Enhancement of Cell Adhesion on a Phosphorylcholine-Based Surface through the Interaction with DNA Mediated by Ca ²⁺ Ions. Journal of Physical Chemistry B, 2016, 120, 12272-12278.	2.6	2
95	Enhancement of intercellular interaction between iPSC-derived neural progenitor cells and activated endothelial cells using cell surface modification with functional oligopeptides. Biomaterials Science, 2022, 10, 925-938.	5.4	2
96	Preparation of Magnetic Hydrogel Microparticles with Cationic Surfaces and Their Cell-Assembling Performance. ACS Biomaterials Science and Engineering, 2021, 7, 5107-5117.	5.2	1
97	A Robust Method to Store Complement C3 With Superior Ability to Maintain the Native Structure and Function of the Protein. Frontiers in Immunology, 2022, 13, 891994.	4.8	1
98	Agarose Hydrogel Beads for Treating Diabetes. , 2016, , 463-477.		0
99	Design and Application of Cell Glue. Kobunshi Ronbunshu, 2018, 75, 103-115.	0.2	0
100	Membrane-anchored ratiometric fluorescent probe forvisualizing the extracellular juxtamembrane pH. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, JKP-13.	0.0	0
101	Cell surface pH imaging using a membrane-anchored ratiometric fluorescence probe: Poly(ethylene) Tj ETQq1 1 (for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-S14-1.	0.0 0.0	rgBT /Overlo
102	Functional Materials for Cellular Surface Modification and its Progress in Biomedical Application. Membrane, 2022, 47, 137-146.	0.0	0