
Surbhi Grewal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733433/publications.pdf Version: 2024-02-01

SUDRHI CDEVIAL

#	Article	IF	CITATIONS
1	Adenosine Methylation in Arabidopsis mRNA is Associated with the 3′ End and Reduced Levels Cause Developmental Defects. Frontiers in Plant Science, 2012, 3, 48.	3.6	213
2	A step change in the transfer of interspecific variation into wheat from <i>Amblyopyrum muticum</i> . Plant Biotechnology Journal, 2017, 15, 217-226.	8.3	124
3	Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theoretical and Applied Genetics, 2018, 131, 389-406.	3.6	74
4	Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Annals of Botany, 2018, 121, 229-240.	2.9	57
5	Rapid identification of homozygosity and site of wild relative introgressions in wheat through chromosomeâ€specific <scp>KASP</scp> genotyping assays. Plant Biotechnology Journal, 2020, 18, 743-755.	8.3	50
6	Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theoretical and Applied Genetics, 2019, 132, 1555-1570.	3.6	37
7	Generation of amphidiploids from hybrids of wheat and related species from the genera <i>Aegilops</i> , <i>Secale</i> , <i>Thinopyrum</i> , and <i>Triticum</i> as a source of genetic variation for wheat improvement. Genome, 2015, 58, 71-79.	2.0	30
8	Detection of T. urartu Introgressions in Wheat and Development of a Panel of Interspecific Introgression Lines. Frontiers in Plant Science, 2018, 9, 1565.	3.6	27
9	Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC Plant Biology, 2019, 19, 183.	3.6	25
10	Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theoretical and Applied Genetics, 2020, 133, 2213-2226.	3.6	25
11	Development of Stable Homozygous Wheat/Amblyopyrum muticum (Aegilops mutica) Introgression Lines and Their Cytogenetic and Molecular Characterization. Frontiers in Plant Science, 2019, 10, 34.	3.6	21
12	Development of Wheat-Aegilops caudata Introgression Lines and Their Characterization Using Genome-Specific KASP Markers. Frontiers in Plant Science, 2020, 11, 606.	3.6	20
13	Mapping the â€ [~] breaker' element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theoretical and Applied Genetics, 2015, 128, 1049-1059.	3.6	15
14	Comparative Mapping and Targetedâ€Capture Sequencing of the Gametocidal Loci in <i>Aegilops sharonensis</i> . Plant Genome, 2017, 10, plantgenome2016.09.0090.	2.8	13
15	The Use of Pentaploid Crosses for the Introgression of Amblyopyrum muticum and D-Genome Chromosome Segments Into Durum Wheat. Frontiers in Plant Science, 2019, 10, 1110.	3.6	13
16	Chromosomeâ€specific KASP markers for detecting <i>Amblyopyrum muticum</i> segments in wheat introgression lines. Plant Genome, 2022, 15, e20193.	2.8	11
17	Wholeâ€genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/ <i>Ambylopyrum muticum</i> introgression lines. Plant Biotechnology Journal, 2023, 21, 482-496.	8.3	10
18	Introgression of the Triticum timopheevii Genome Into Wheat Detected by Chromosome-Specific Kompetitive Allele Specific PCR Markers. Frontiers in Plant Science, 2022, 13, .	3.6	9

Surbhi Grewal

#	Article	IF	CITATIONS
19	Generation of Doubled Haploid Wheat-Triticum urartu Introgression Lines and Their Characterisation Using Chromosome-Specific KASP Markers. Frontiers in Plant Science, 2021, 12, 643636.	3.6	7
20	Resistance to wheat rusts identified in wheat/ <i>Amblyopyrum muticum</i> chromosome introgressions. Crop Science, 2020, 60, 1957-1964.	1.8	5
21	Development of a New A m –Genomeâ€Specific Single Nucleotide Polymorphism Marker Set for the Molecular Characterization of Wheat– Triticum monococcum Introgression Lines. Plant Genome, 2019, 12, 180098.	2.8	4
22	Assessing the Potential of Using the Langdon 5D(5B) Substitution Line for the Introgression of Aegilops tauschii Into Durum Wheat. Frontiers in Plant Science, 0, 13, .	3.6	2
23	Exploring Untapped Wheat Genetic Resources to Boost Food Security. , 2022, , 319-340.		1