Hanying Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733276/publications.pdf Version: 2024-02-01

		109264	138417
141	4,191	35	58
papers	citations	h-index	g-index
1.40	1.40	1.40	1706
142	142	142	4/26
all docs	docs citations	times ranked	citing authors
142 all docs	142 docs citations	142 times ranked	4726 citing authors

Ηληνιής Ζηλο

#	Article	IF	CITATIONS
1	Enzyme-catalyzed cascade reactions on multienzyme proteinosomes. Journal of Colloid and Interface Science, 2022, 608, 2593-2601.	5.0	10
2	Silica particles with dynamic Janus surfaces in Pickering emulsion. Polymer, 2022, 240, 124487.	1.8	9
3	Synthesis and modification of polymers by thiol-phenylsulfone substitution reaction. Chemical Communications, 2022, 58, 2148-2151.	2.2	3
4	Ca ²⁺ -Chelation-Induced Fabrication of Multistimuli-Responsive Charged Nanogels from Phospholipid–Polymer Conjugates and Use for Drug/Protein Loading. Langmuir, 2022, 38, 6612-6622.	1.6	2
5	Polymer brush-based erasable and rewritable nanostructured particle surfaces. Materials Chemistry Frontiers, 2022, 6, 1788-1794.	3.2	3
6	Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. Soft Matter, 2022, 18, 5138-5152.	1.2	5
7	Janus Surface Micelles on Silica Particles: Synthesis and Application in Enzyme Immobilization. Macromolecular Rapid Communications, 2021, 42, e2000589.	2.0	13
8	Copper-coordination induced fabrication of stimuli-responsive polymersomes from amphiphilic block copolymer containing pendant thioethers. Polymer Chemistry, 2021, 12, 3105-3115.	1.9	4
9	Oxidation and ATP dual-responsive block copolymer containing tertiary sulfoniums: self-assembly, protein complexation and triggered release. Polymer Chemistry, 2021, 12, 1125-1135.	1.9	4
10	Polymerization-induced proteinosome formation. Journal of Materials Chemistry B, 2021, 9, 1406-1413.	2.9	9
11	Fabrication of PεCL–AuNP–BSA core–shell–corona nanoparticles for flexible spatiotemporal drug delivery and SERS detection. Biomaterials Science, 2021, 9, 4440-4447.	2.6	5
12	Asymmetric Colloidal Particles Fabricated by Polymerization-Induced Surface Self-Assembly Approach. Macromolecules, 2021, 54, 2617-2626.	2.2	14
13	pH /enzyme/light tripleâ€responsive vesicles from lysineâ€based amphiphilic diblock copolymers. Journal of Polymer Science, 2021, 59, 1958-1971.	2.0	4
14	Homopolymer-Assisted Fusions of Polymer Brushes and Block Copolymer Vesicles. Macromolecules, 2021, 54, 11412-11418.	2.2	7
15	Polymerization-Induced Interfacial Self-Assembly: A Powerful Tool for the Synthesis of Micro-sized Hollow Capsules. Macromolecules, 2021, 54, 11238-11247.	2.2	7
16	Biosurfaces Fabricated by Polymerization-Induced Surface Self-Assembly. Langmuir, 2020, 36, 12649-12657.	1.6	11
17	Electrostatic assisted fabrication and dissociation of multi-component proteinosomes. Journal of Colloid and Interface Science, 2020, 576, 90-98.	5.0	10
18	Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules, 2020, 21, 4063-4075.	2.6	15

#	Article	IF	CITATIONS
19	Synthesis of Y-Shaped Polymer Brushes on Silica Particles and Hierarchical Surface Structures Fabricated by the Coassembly Approach. Macromolecules, 2020, 53, 5001-5014.	2.2	17
20	Surface Nanostructures Based on Assemblies of Polymer Brushes. ChemPlusChem, 2020, 85, 998-1007.	1.3	14
21	Surface Reconstruction by a Coassembly Approach. Angewandte Chemie, 2019, 131, 10687-10691.	1.6	4
22	Hydrophobic Interaction-Induced Coassembly of Homopolymers and Proteins. Langmuir, 2019, 35, 10958-10964.	1.6	19
23	Surface Nanostructures Fabricated by Polymerization-Induced Surface Self-Assembly. Macromolecules, 2019, 52, 8404-8414.	2.2	19
24	Biomimetic Mineralization of Protein Nanogels for Enzyme Protection. Chemistry - A European Journal, 2019, 25, 16712-16717.	1.7	4
25	Peroxidase-Mediated In Situ Fabrication of Multi-Stimuli-Responsive and Dynamic Protein Nanogels from Tyrosine-Conjugated Biodynamer and Ovablumin. ACS Macro Letters, 2019, 8, 1233-1239.	2.3	7
26	Surface Reconstruction by a Coassembly Approach. Angewandte Chemie - International Edition, 2019, 58, 10577-10581.	7.2	16
27	Degradable Protein-loaded Polymer Capsules Fabricated by Thiol-disulfide Cross-linking Reaction at Liquid-liquid Interface. Chinese Journal of Polymer Science (English Edition), 2019, 37, 790-796.	2.0	3
28	Protein-Induced Dissociation of Biomolecular Assemblies. ACS Applied Bio Materials, 2019, 2, 470-479.	2.3	2
29	Self-assembly of positively charged polymer patchy micelles in organic solutions and the reversible ultrasound responsivity of the assemblies. Materials Chemistry Frontiers, 2019, 3, 606-614.	3.2	16
30	Coassembly of Linear Diblock Copolymer Chains and Homopolymer Brushes on Silica Particles: A Combined Computer Simulation and Experimental Study. Macromolecules, 2018, 51, 1894-1904.	2.2	30
31	Fabrication of Polymer–Protein Hybrids. Macromolecular Rapid Communications, 2018, 39, e1700737.	2.0	19
32	Amphiphilic Janus Twin Single hain Nanoparticles. Chemistry - A European Journal, 2018, 24, 3005-3012.	1.7	19
33	Coassembly of Lysozyme and Amphiphilic Biomolecules Driven by Unimer–Aggregate Equilibrium. Journal of Physical Chemistry B, 2018, 122, 3900-3907.	1.2	12
34	Bioassemblies Fabricated by Coassembly of Protein Molecules and Monotethered Single-Chain Polymeric Nanoparticles. Langmuir, 2018, 34, 13705-13712.	1.6	11
35	Surface Coassembly of Polymer Brushes and Polymer–Protein Bioconjugates: An Efficient Approach to the Purification of Bioconjugates under Mild Conditions. Biomacromolecules, 2018, 19, 4463-4471.	2.6	22
36	Covalently Connected Polymer–Protein Nanostructures Fabricated by a Reactive Selfâ€Assembly Approach. Chemistry - A European Journal, 2017, 23, 3366-3374.	1.7	16

#	Article	IF	CITATIONS
37	Multi-stimuli-responsive biohybrid nanoparticles with cross-linked albumin coronae self-assembled by a polymer-protein biodynamer. Acta Biomaterialia, 2017, 54, 259-270.	4.1	25
38	Poly(<i>p</i> â€vinylbenzoic acid)â€blockâ€polystyrene Selfâ€assembled Structures as Templates in the Synthesis of ZIFâ€8. Chemistry - an Asian Journal, 2017, 12, 753-758.	1.7	7
39	Coâ€∎ssembly of Patchy Polymeric Micelles and Protein Molecules. Angewandte Chemie - International Edition, 2017, 56, 8844-8848.	7.2	49
40	Coâ€essembly of Patchy Polymeric Micelles and Protein Molecules. Angewandte Chemie, 2017, 129, 8970-8974.	1.6	16
41	The synthesis and self-assembly of bioconjugates composed of thermally-responsive polymer chains and pendant lysozyme molecules. Polymer Chemistry, 2017, 8, 2815-2823.	1.9	22
42	Block copolymer micelles with enzyme molecules at the interfaces. Journal of Polymer Science Part A, 2017, 55, 2047-2052.	2.5	3
43	Synthesis of Zwitterionic Diblock Copolymers with Cleavable Biotin Groups at the Junction Points and Fabrication of Bioconjugates by Biotin–Streptavidin Coupling. Macromolecules, 2017, 50, 2284-2295.	2.2	32
44	Nanoscale Proteinosomes Fabricated by Self-Assembly of a Supramolecular Protein–Polymer Conjugate. Bioconjugate Chemistry, 2017, 28, 636-641.	1.8	43
45	Poly(ε-caprolactone) with pendant natural peptides: an old polymeric biomaterial with new properties. Polymer Chemistry, 2017, 8, 5415-5426.	1.9	10
46	Synthesis and self-assembly of amphiphilic tadpole-shaped block copolymer with disulfides at the junction points between cyclic PEG and linear PS. Polymer, 2017, 122, 52-59.	1.8	14
47	Surfactant Behavior of Amphiphilic Polymer-Tethered Nanoparticles. Langmuir, 2016, 32, 3567-3579.	1.6	22
48	Enzyme-polymer hybrid nanogels fabricated by thiol-disulfide exchange reaction. Colloids and Surfaces B: Biointerfaces, 2016, 148, 41-48.	2.5	25
49	Preparation of Janus Graphene Oxide (GO) Nanosheets Based on Electrostatic Assembly of GO Nanosheets and Polystyrene Microspheres. Macromolecular Rapid Communications, 2016, 37, 1520-1526.	2.0	21
50	Protein-Cross-Linked Triple-Responsive Polymer Networks Based on Molecular Recognition. ACS Macro Letters, 2016, 5, 1222-1226.	2.3	19
51	Protein Nanogels with Temperature-Induced Reversible Structures and Redox Responsiveness. ACS Biomaterials Science and Engineering, 2016, 2, 2266-2275.	2.6	23
52	In situ fabrication of PHEMA–BSA core–corona biohybrid particles. Journal of Materials Chemistry B, 2016, 4, 4430-4438.	2.9	15
53	Synthesis of amphiphilic block-type macromolecular brushes with cleavable pendant chains and fabrication of micelle-templated polymer nanocapsules. Polymer Chemistry, 2016, 7, 1197-1206.	1.9	17
54	Silica particles with immobilized protein molecules and polymer brushes. Acta Biomaterialia, 2016, 29, 446-454.	4.1	37

#	Article	IF	CITATIONS
55	Cleavage of Diblock Copolymer Brushes in a Selective Solvent and Fusion of Vesicles Self-Assembled by Pinned Micelles. Langmuir, 2015, 31, 1867-1873.	1.6	23
56	Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation. Physical Chemistry Chemical Physics, 2015, 17, 12215-12221.	1.3	11
57	Surface-tunable colloidal particles stabilized by mono-tethered single-chain nanoparticles. Polymer, 2015, 64, 277-284.	1.8	21
58	Patchy Micelles Based on Coassembly of Block Copolymer Chains and Block Copolymer Brushes on Silica Particles. Langmuir, 2015, 31, 4129-4136.	1.6	23
59	Reductant-triggered rapid self-gelation and biological functionalization of hydrogels. Polymer Chemistry, 2015, 6, 8275-8283.	1.9	16
60	Environmentally responsive amino acid-bioconjugated dynamic covalent copolymer as a versatile scaffold for conjugation. RSC Advances, 2015, 5, 30456-30463.	1.7	4
61	Brush macromolecules with thermo-sensitive coil backbones and pendant polypeptide side chains: synthesis, self-assembly and functionalization. Polymer Chemistry, 2015, 6, 1316-1324.	1.9	13
62	Fabrication CdS nanoparticles on the edges of reduced graphene oxide sheets with P2VP polymer brushes. Materials Letters, 2014, 118, 184-187.	1.3	3
63	Amphiphilic Janus Gold Nanoparticles Prepared by Interfaceâ€Directed Selfâ€Assembly: Synthesis and Selfâ€Assembly. Chemistry - an Asian Journal, 2014, 9, 2597-2603.	1.7	18
64	Multi-responsive protein nanocarriers from an anionic dynamic covalent copolymer. Polymer Chemistry, 2014, 5, 4797-4804.	1.9	14
65	Controlled self-assembly of amphiphilic monotailed single-chain nanoparticles. Polymer Chemistry, 2014, 5, 4032.	1.9	39
66	Reactive polymeric micelles with disulfide groups in the coronae. Polymer Chemistry, 2014, 5, 6584-6592.	1.9	12
67	Construction of Multifunctionalizable, Core-Cross-Linked Polymeric Nanoparticles via Dynamic Covalent Bond. Macromolecules, 2014, 47, 1999-2009.	2.2	30
68	Dynamic polymer brushes on the surface of silica particles. RSC Advances, 2013, 3, 7023.	1.7	15
69	Synthesis and Self-Assembly of Amphiphilic Janus Laponite Disks. Macromolecules, 2013, 46, 5974-5984.	2.2	59
70	Preparation of Reduced Graphene Oxide/Poly(acrylamide) Nanocomposite and Its Adsorption of Pb(II) and Methylene Blue. Langmuir, 2013, 29, 10727-10736.	1.6	237
71	Polymeric Micelles with Mesoporous Cores. ACS Macro Letters, 2013, 2, 891-895.	2.3	10
72	Hydrophilic interface-crosslinked polymer micelles: a platform for nanoreactors and nanocarriers. Polymer Chemistry, 2013, 4, 4499.	1.9	6

#	Article	IF	CITATIONS
73	Amphiphilic gold nanoparticles formed at a liquid–liquid interface and fabrication of hybrid nanocapsules based on interfacial UV photodimerization. Polymer Chemistry, 2013, 4, 1913.	1.9	30
74	Self-Assembly of Monotethered Single-Chain Nanoparticle Shape Amphiphiles. ACS Macro Letters, 2013, 2, 100-106.	2.3	75
75	Intramolecular atom transfer radical coupling of macromolecular brushes. Journal of Polymer Science Part A, 2013, 51, 3567-3571.	2.5	7
76	Interface cross-linked polymeric micelles with mixed coronal chains prepared by RAFT polymerization at the interface. Soft Matter, 2012, 8, 11809.	1.2	14
77	Combâ€Shaped Glycopolymer/Peptide Bioconjugates by Combination of RAFT Polymerization and Thiolâ€Ene "Click―Chemistry. Macromolecular Bioscience, 2012, 12, 1575-1582.	2.1	24
78	Interface-Directed Self-Assembly of Gold Nanoparticles and Fabrication of Hybrid Hollow Capsules by Interfacial Cross-Linking Polymerization. Langmuir, 2012, 28, 9365-9371.	1.6	33
79	Self-Assembly of a Diblock Copolymer with Pendant Disulfide Bonds and Chromophore Groups: A New Platform for Fast Release. Langmuir, 2012, 28, 11232-11240.	1.6	25
80	Synthesis of PNIPAM polymer brushes on reduced graphene oxide based on click chemistry and RAFT polymerization. Journal of Polymer Science Part A, 2012, 50, 329-337.	2.5	82
81	Photophysical properties and self-assembly of triblock copolymer with complexes of positively charged PDMAEMA and oppositely charged chromophores. Polymer, 2012, 53, 1906-1914.	1.8	8
82	PS Colloidal Particles Stabilized by Graphene Oxide. Langmuir, 2011, 27, 1186-1191.	1.6	112
83	Silica Nanorings on the Surfaces of Layered Silicate. Langmuir, 2011, 27, 13212-13219.	1.6	6
84	Nanoparticles with Fe ₃ O ₄ â^'Nanoparticle Cores and Gold-Nanoparticle Coronae Prepared by Self-Assembly Approach. Journal of Physical Chemistry C, 2011, 115, 3304-3312.	1.5	42
85	Self-assembly of polystyrene with pendant hydrophilic gold nanoparticles: the influence of the hydrophilicity of the hybrid polymers. Journal of Materials Chemistry, 2011, 21, 16928.	6.7	15
86	Amphiphilic Triblock Copolymer Bioconjugates with Biotin Groups at the Junction Points: Synthesis, Self-Assembly, and Bioactivity. Macromolecules, 2011, 44, 2016-2024.	2.2	34
87	Reactive triblock copolymer micelles induced by click reaction: A platform for RAFT polymerization. Soft Matter, 2011, 7, 11194.	1.2	9
88	Macromolecular brushes synthesized by "grafting from―approach based on "click chemistry―and RAFT polymerization. Journal of Polymer Science Part A, 2010, 48, 443-453.	2.5	82
89	Synthesis and Self-Assembly of Amphiphilic Asymmetric Macromolecular Brushes. Macromolecules, 2010, 43, 7434-7445.	2.2	115
90	Amphiphilic Asymmetric Comb Copolymer with Pendant Pyrene Groups and PNIPAM Side Chains: Synthesis, Photophysical Properties, and Self-Assembly. Journal of Physical Chemistry B, 2010, 114, 6300-6308.	1.2	36

#	Article	IF	CITATIONS
91	Thermoresponsive Nanohydrogels Cross-Linked by Gold Nanoparticles. ACS Applied Materials & Interfaces, 2010, 2, 2261-2268.	4.0	45
92	Self-Assembly of Gold Nanoparticles and Polystyrene: A Highly Versatile Approach to the Preparation of Colloidal Particles with Polystyrene Cores and Gold Nanoparticle Coronae. Langmuir, 2010, 26, 8762-8768.	1.6	47
93	Synthesis of PLLAâ€PEOMA combâ€ <i>block</i> â€comb type molecular brushes based on AGET ATRP and ringâ€opening polymerization. Polymer International, 2009, 58, 1335-1340.	1.6	18
94	Functional colloidal particles stabilized by layered silicate with hydrophilic face and hydrophobic polymer brushes. Journal of Polymer Science Part A, 2009, 47, 1535-1543.	2.5	42
95	Exfoliated Graphite Oxide Decorated by PDMAEMA Chains and Polymer Particles. Langmuir, 2009, 25, 11808-11814.	1.6	267
96	Surface-Initiated Free Radical Polymerization at the Liquidâ^'Liquid Interface: A One-Step Approach for the Synthesis of Amphiphilic Janus Silica Particles. Langmuir, 2009, 25, 6431-6437.	1.6	84
97	Bioconjugation of Biotin to the Interfaces of Polymeric Micelles via In Situ Click Chemistry. Langmuir, 2009, 25, 744-750.	1.6	49
98	Bioconjugated Janus Particles Prepared by in Situ Click Chemistry. Chemistry of Materials, 2009, 21, 4012-4018.	3.2	65
99	Vesicles fabricated by hybrid nanoparticles. Chemical Communications, 2009, , 3807.	2.2	16
100	PMMA colloid particles armored by clay layers with PDMAEMA polymer brushes. Journal of Polymer Science Part A, 2008, 46, 2632-2639.	2.5	47
101	Crystallization and thermal properties of PLLA comb polymer. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 589-598.	2.4	34
102	Surfaceâ€Active Gold Nanoparticles with Mixed Polymer Brushes as Surfactants in the Preparation of Polystyrene Colloid Particles. Macromolecular Rapid Communications, 2008, 29, 45-51.	2.0	19
103	Suspension polymerization stabilized by triblock copolymer with CdS nanoparticles. Polymer, 2008, 49, 2650-2655.	1.8	21
104	Synthesis of Comb Copolymers with Pendant Chromophore Groups Based on RAFT Polymerization and Click Chemistry and Formation of Electron Donorâ^'Acceptor Supramolecules. Macromolecules, 2008, 41, 7863-7869.	2.2	74
105	Copolymers of styrene and gold nanoparticles. Chemical Communications, 2008, , 6549.	2.2	15
106	In-Situ Polymerization at the Interfaces of Micelles: A "Grafting From―Method to Prepare Micelles with Mixed Coronal Chains. Journal of Physical Chemistry B, 2008, 112, 12612-12617.	1.2	22
107	PMMA Colloid Particles Stabilized by Layered Silicate with PMMA-b-PDMAEMA Block Copolymer Brushes. Langmuir, 2007, 23, 2867-2873.	1.6	56
108	In-Situ Polymerization at the Interface of Micelles: A Novel Method to Control Functionality and Morphology. Macromolecular Rapid Communications, 2007, 28, 1051-1056.	2.0	17

#	Article	IF	CITATIONS
109	Synthesis, characterization and application of well-defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer, 2007, 48, 1989-1997.	1.8	147
110	PS/PMMA mixed polymer brushes on the surface of clay layers: Preparation and application in polymer blends. Journal of Polymer Science Part A, 2007, 45, 5329-5338.	2.5	32
111	Synthesis of PS and PDMAEMA mixed polymer brushes on the surface of layered silicate and their application in pickering suspension polymerization. Journal of Polymer Science Part A, 2007, 45, 5759-5769.	2.5	21
112	Mixed Molecular Brushes with PLLA and PS Side Chains Prepared by AGET ATRP and Ring-Opening Polymerization. Macromolecules, 2006, 39, 7513-7519.	2.2	60
113	Poly(l-lactide) comb polymer brushes on the surface of clay layers. Polymer, 2006, 47, 7374-7381.	1.8	39
114	Double-responsive polymer brushes on the surface of colloid particles. Journal of Colloid and Interface Science, 2006, 301, 85-91.	5.0	81
115	Combâ^'Coil Polymer Brushes on the Surface of Silica Nanoparticles. Macromolecules, 2005, 38, 10619-10622.	2.2	72
116	Polymer-silicate nanocomposites produced by in situ atom transfer radical polymerization. Journal of Polymer Science Part A, 2004, 42, 916-924.	2.5	83
117	Nanopatterns of poly(styrene-block-butyl acrylate) block copolymer brushes on the surfaces of exfoliated and intercalated clay layers. Polymer, 2004, 45, 4473-4481.	1.8	70
118	Influence of Reactive Compatibilization on the Morphology of Polypropylene/Polystyrene Blends. Macromolecular Symposia, 2004, 214, 279-288.	0.4	3
119	Title is missing!. Journal of Materials Science Letters, 2003, 22, 205-207.	0.5	3
120	Preparation of Poly(styrene-block-butyl acrylate) Block Copolymerâ^'Silicate Nanocomposites. Chemistry of Materials, 2003, 15, 2693-2695.	3.2	79
121	Morphology of reactive PP/PS blends with hyperbranched polymers. Macromolecular Symposia, 2003, 198, 209-220.	0.4	6
122	Preparation of Corona-Embedded CdS Nanoparticles. Chemistry of Materials, 2002, 14, 1418-1423.	3.2	81
123	Noncovalently Connected Polymeric Micelles in Aqueous Medium. Langmuir, 2001, 17, 6122-6126.	1.6	59
124	Salt-Induced Block Copolymer Micelles as Nanoreactors for the Formation of CdS Nanoparticles. Materials Research Society Symposia Proceedings, 2001, 703, 1.	0.1	1
125	Synthesis of Chromophore-Labeled PP by the Borane Approach and their Application in Probing Penetration of Oligomeric PP into PP Particles. Macromolecular Chemistry and Physics, 2001, 202, 313-318.	1.1	3
126	Preparation of CdS Nanoparticles in Salt-Induced Block Copolymer Micelles. Langmuir, 2001, 17, 8428-8433.	1.6	152

#	Article	IF	CITATIONS
127	Micelle-like particles formed by carboxylic acid-terminated polystyrene and poly(4-vinyl pyridine) in chloroform/methanol mixed solution. Polymer, 2000, 41, 2705-2709.	1.8	19

128 Interpolymer Hydrogen-Bonding Complexation Induced Micellization from Polystyrene-b-poly(methyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

1.8	9
3.8	14
2.6	7
1.3	11
1.1	4
2.4	26
1.1	4
	3.8 2.6 1.3 1.1 2.4 1.1

Compatibilizing effect of polystyrene-block-poly(4-vinylpyridine) for poly(2,6-dimethyl-1,4-phenylene) Tj ETQq0 0 0 $\underset{1:4}{\operatorname{rgBT}}$ /Overlock 10 Tf

137	Excimer Fluorescence Studies on the Miscibility of Polyolefins in the Amorphous Phase. Polymer Journal, 1998, 30, 149-151.	1.3	7
138	Blends of Linear Low-Density Polyethylene and a Diblock Copolymer of Hydrogenated Polybutadiene and Methyl Methacrylate. Polymer Journal, 1998, 30, 775-779.	1.3	7
139	Novel Morphology in Ring-Banded Spherulites from Single-Phase Mixtures of Poly(ε-caprolactone) with Poly(styrene-co-acrylonitrile). Polymer Journal, 1998, 30, 206-209.	1.3	5
140	Compatibilization of blends of polybutadiene and poly(methyl methacrylate) with poly(butadiene-block-methyl methacrylate). , 1998, 36, 85.		1
141	Poly(vinyl methyl ether)/Poly(methyl methacrylate) Blends Using Diblock Copolymer of Styrene and Methyl Methacrylate as Compatibilizer. Polymer Journal, 1997, 29, 637-641.	1.3	0