
## Ivo Siekmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2733120/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A type IV functional response with different shapes in a predator–prey model. Journal of Theoretical<br>Biology, 2020, 505, 110419.                                                                                 | 1.7 | 14        |
| 2  | Taxis-driven pattern formation in a predator-prey model with group defense. Ecological Complexity, 2020, 43, 100848.                                                                                                | 2.9 | 7         |
| 3  | Data-Driven Modelling of the Inositol Trisphosphate ReceptorÂ( \$\$ext {IP}_3ext {R}\$\$ ) and its Role<br>in Calcium-Induced Calcium ReleaseÂ(CICR). Springer Series in Computational Neuroscience, 2019, , 39-68. | 0.3 | 2         |
| 4  | Mathematical modelling indicates that lower activity of the haemostatic system in neonates is primarily due to lower prothrombin concentration. Scientific Reports, 2019, 9, 3936.                                  | 3.3 | 4         |
| 5  | Invasive competition with Fokker-Planck diffusion and noise. Ecological Complexity, 2018, 34, 134-138.                                                                                                              | 2.9 | 1         |
| 6  | An applied mathematician's perspective on Rosennean Complexity. Ecological Complexity, 2018, 35, 28-38.                                                                                                             | 2.9 | 8         |
| 7  | Bond graph modelling of chemoelectrical energy transduction. IET Systems Biology, 2017, 11, 127-138.                                                                                                                | 1.5 | 18        |
| 8  | Coexistence of competitors mediated by nonlinear noise. European Physical Journal: Special Topics, 2017, 226, 2157-2170.                                                                                            | 2.6 | 3         |
| 9  | Modelling modal gating of ion channels with hierarchical Markov models. Proceedings of the Royal<br>Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160122.                                | 2.1 | 14        |
| 10 | Fighting Enemies and Noise: Competition of Residents and Invaders in a Stochastically Fluctuating Environment. Mathematical Modelling of Natural Phenomena, 2016, 11, 137-157.                                      | 2.4 | 6         |
| 11 | Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and<br>Mitochondria on Ca2+ Release Patterns in Cardiomyocytes. PLoS Computational Biology, 2015, 11,<br>e1004417.             | 3.2 | 46        |
| 12 | Bifurcation analysis of individual-based models in population dynamics. Ecological Complexity, 2015, 21, 177-184.                                                                                                   | 2.9 | 4         |
| 13 | Statistical analysis of modal gating in ion channels. Proceedings of the Royal Society A: Mathematical,<br>Physical and Engineering Sciences, 2014, 470, 20140030.                                                  | 2.1 | 14        |
| 14 | PyTrA: ultra-fast transient absorption data analysis software. International Journal of<br>Nanotechnology, 2014, 11, 601.                                                                                           | 0.2 | 0         |
| 15 | On competition in ecology, epidemiology and eco-epidemiology. Ecological Complexity, 2013, 14, 166-179.                                                                                                             | 2.9 | 2         |
| 16 | MCMC Can Detect Nonidentifiable Models. Biophysical Journal, 2012, 103, 2275-2286.                                                                                                                                  | 0.5 | 80        |
| 17 | A Park/Drive Model for the Inositol-Trisphosphate Receptor (IPR). Biophysical Journal, 2012, 102, 110a.                                                                                                             | 0.5 | 0         |
| 18 | A Kinetic Model for Type I and II IP3R Accounting for Mode Changes. Biophysical Journal, 2012, 103, 658-668.                                                                                                        | 0.5 | 59        |

Ινο Siekmann

| #  | Article                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | MCMC Estimation of Markov Models for Ion Channels. Biophysical Journal, 2011, 100, 1919-1929.                          | 0.5 | 54        |
| 20 | On competition of predators and prey infection. Ecological Complexity, 2010, 7, 446-457.                               | 2.9 | 19        |
| 21 | Mathematical Models of Pattern Formation in Planktonic Predation-Diffusion Systems: A Review. , 2008, , 1-26.          |     | 1         |
| 22 | Predation may defeat spatial spread of infection. Journal of Biological Dynamics, 2008, 2, 40-54.                      | 1.7 | 6         |
| 23 | Local Collapses in the Truscott-Brindley Model. Mathematical Modelling of Natural Phenomena, 2008, 3, 114-130.         | 2.4 | 7         |
| 24 | An extension of the Beretta-Kuang model of viral diseases. Mathematical Biosciences and Engineering, 2008, 5, 549-565. | 1.9 | 22        |