Thien H Ngo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273265/publications.pdf

Version: 2024-02-01

304743 395702 1,140 36 22 33 citations h-index g-index papers 39 39 39 1442 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Comparing the anion binding of 4-amido- with 4-amino-1,8-naphthalimides. Organic and Biomolecular Chemistry, 2021, 19, 9260-9265.	2.8	O
2	Rotaxanation as a sequestering template to preclude incidental metal insertion in complex oligochromophores. Chemical Communications, 2020, 56, 7447-7450.	4.1	1
3	Membrane-type Surface stress Sensor (MSS) for artificial olfactory system., 2019,, 27-38.		2
4	Membrane-type Surface Stress Sensor (MSS) for Artificial Olfaction. , 2019, , .		1
5	Dynamic Control of Intramolecular Rotation by Tuning the Surrounding Two-Dimensional Matrix Field. ACS Nano, 2019, 13, 2410-2419.	14.6	34
6	Mechanical Tuning of Throughâ€Molecule Conductance in a Conjugated Calix[4]pyrrole. ChemistrySelect, 2018, 3, 6473-6478.	1.5	18
7	Effects of Center Metals in Porphines on Nanomechanical Gas Sensing. Sensors, 2018, 18, 1640.	3.8	24
8	Functional Nanoparticles-Coated Nanomechanical Sensor Arrays for Machine Learning-Based Quantitative Odor Analysis. ACS Sensors, 2018, 3, 1592-1600.	7.8	38
9	Absorption and Fluorescence Features of an Amphiphilic <i>meso</i> -Pyrimidinylcorrole: Experimental Study and Quantum Chemical Calculations. Journal of Physical Chemistry A, 2017, 121, 8614-8624.	2.5	14
10	Porphyrinoid rotaxanes: building a mechanical picket fence. Chemical Science, 2017, 8, 6679-6685.	7.4	26
11	Phosphorescence of free base corroles. RSC Advances, 2016, 6, 43911-43915.	3. 6	16
12	Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin–Copper Corrole Donor–Acceptor Conjugates. Chemistry - A European Journal, 2016, 22, 1301-1312.	3.3	25
13	Macroporous Materials: Highâ€Internalâ€Phase Emulsion Tailoring Polymer Amphiphilicity towards an Efficient NIRâ€Sensitive Bacteria Filter (Small 37/2015). Small, 2015, 11, 4875-4875.	10.0	0
14	Highâ€Internalâ€Phase Emulsion Tailoring Polymer Amphiphilicity towards an Efficient NIRâ€Sensitive Bacteria Filter. Small, 2015, 11, 4876-4883.	10.0	32
15	Surface-assisted Dehydrogenative Homocoupling of Porphine Molecules. Journal of the American Chemical Society, 2014, 136, 9346-9354.	13.7	140
16	Molecular Structures and Absorption Spectra Assignment of Corrole NH Tautomers. Journal of Physical Chemistry A, 2014, 118, 862-871.	2.5	47
17	Linear and Cyclic Hybrids of Alternating Thiophene–Amino Acid Units: Synthesis and Effects of Chirality on Conformation and Molecular Packing. Chemistry - A European Journal, 2013, 19, 15155-15165.	3.3	4
18	Unraveling the Fluorescence Features of Individual Corrole NH Tautomers. Journal of Physical Chemistry A, 2012, 116, 10695-10703.	2.5	49

#	Article	lF	CITATIONS
19	Corrole NH Tautomers: Spectral Features and Individual Protonation. Journal of Physical Chemistry A, 2012, 116, 10683-10694.	2.5	44
20	Solvent-Dependent Deprotonation of <i>meso</i> Pyrimidinylcorroles: Absorption and Fluorescence Studies. Journal of Physical Chemistry A, 2012, 116, 10704-10711.	2.5	45
21	Linear and Cyclic Amides with a Thiophene Backbone: Ultrasound-Promoted Synthesis and Crystal Structures. Journal of Organic Chemistry, 2012, 77, 9676-9683.	3.2	9
22	Corrole–Porphyrin Conjugates with Interchangeable Metal Centers. European Journal of Organic Chemistry, 2012, 2012, 5605-5617.	2.4	22
23	Oligoether-strapped meso-pyrimidinylporphyrins. Tetrahedron Letters, 2012, 53, 2406-2409.	1.4	7
24	Vibrational states of Zn-meso-indolo[3,2-b]carbazolyl-substituted porphyrins: Fluorescence line narrowing study. Vibrational Spectroscopy, 2012, 61, 199-205.	2.2	1
25	Luminescence of meso-pyrimidinylcorroles: relationship with substitution pattern and heavy atom effects. Photochemical and Photobiological Sciences, 2011, 10, 143-150.	2.9	27
26	Determination of the surface acidity of a free-base corrole in a self-assembled monolayer. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 499-505.	1.6	6
27	<i>meso</i> àê€Indolo[3,2â€ <i>b</i>]carbazolylâ€Substituted Porphyrinoids: Synthesis, Characterization and Effect of the Number of Indolocarbazole Moieties on the Photophysical Properties. European Journal of Organic Chemistry, 2010, 2010, 2576-2586.	2.4	32
28	Cationâ€Selective Microcontact Printing Based on Surfaceâ€Molecularâ€Imprinted Layerâ€byâ€Layer Films. Advanced Materials, 2010, 22, 2689-2693.	21.0	29
29	Synthetic, Structural, and Photophysical Exploration of <i>meso</i> à€Pyrimidinylâ€Substituted AB ₂ â€Corroles. Chemistry - A European Journal, 2010, 16, 5691-5705.	3.3	51
30	An oxacalix[2]arene[2]pyrimidine-bis(Zn-porphyrin) tweezer as a selective receptor towards fullerene C70. Tetrahedron Letters, 2010, 51, 2423-2426.	1.4	51
31	meso-Pyrimidinyl-Substituted A2B- and A3-Corroles. Journal of Organic Chemistry, 2010, 75, 2127-2130.	3.2	33
32	Reversible Dispersion of Single-Walled Carbon Nanotubes Based on a CO ₂ -Responsive Dispersant. Langmuir, 2010, 26, 16667-16671.	3.5	67
33	Reductive demetallation of Cu-corroles—a new protective strategy towards functional free-base corroles. Organic and Biomolecular Chemistry, 2009, 7, 439-443.	2.8	85
34	1,4-Oxazepines and 1,4-Thiazepines., 2008,, 255-298.		8
35	<i>meso</i> -Pyrimidinyl-Substituted A ₂ B-Corroles. Organic Letters, 2007, 9, 3165-3168.	4.6	50
36	Efficient synthesis of aryldipyrromethanes in water and their application in the synthesis of corroles and dipyrromethenes. Arkivoc, 2007, 2007, 307-324.	0.5	100