
Nobuyoshi Kosaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osteoblast-derived vesicles induce a switch from bone-formation to bone-resorption in vivo. Nature Communications, 2022, 13, 1066.	12.8	39
2	Extracellular vesicles as biomarkers and therapeutic targets for cancer. American Journal of Physiology - Cell Physiology, 2020, 318, C29-C39.	4.6	162
3	The miRâ€1908/SRM regulatory axis contributes to extracellular vesicle secretion in prostate cancer. Cancer Science, 2020, 111, 3258-3267.	3.9	11
4	Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. Journal of Extracellular Vesicles, 2020, 9, 1713527.	12.2	58
5	miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Science Advances, 2020, 6, eaay3051.	10.3	39
6	Latest advances in extracellular vesicles: from bench to bedside. Science and Technology of Advanced Materials, 2019, 20, 746-757.	6.1	74
7	Exploiting the message from cancer: the diagnostic value of extracellular vesicles for clinical applications. Experimental and Molecular Medicine, 2019, 51, 1-9.	7.7	87
8	Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2204-2209.	7.1	200
9	The abrogation of condensin function provides independent evidence for defining the self-renewing population of pluripotent stem cells. Developmental Biology, 2018, 433, 218-226.	2.0	13
10	Extracellular vesicles: Toward a clinical application in urological cancer treatment. International Journal of Urology, 2018, 25, 533-543.	1.0	32
11	Understanding the Role of Extracellular Vesicles in Lenalidomide-Resistance Multiple Myeloma. Blood, 2018, 132, 1887-1887.	1.4	1
12	An X-ray shielded irradiation assay reveals EMT transcription factors control pluripotent adult stem cell migration <i>in vivo</i> in planarians. Development (Cambridge), 2017, 144, 3440-3453.	2.5	49
13	Versatile roles of extracellular vesicles in cancer. Journal of Clinical Investigation, 2016, 126, 1163-1172.	8.2	261
14	Expression Level of Urinary MicroRNA-146a-5p Is Increased in Patients With Bladder Cancer and Decreased in Those After Transurethral Resection. Clinical Genitourinary Cancer, 2016, 14, e493-e499.	1.9	53
15	<scp>PAI</scp> â€1, a target gene of miRâ€143, regulates invasion and metastasis by upregulating <scp>MMP</scp> â€13 expression of human osteosarcoma. Cancer Medicine, 2016, 5, 892-902.	2.8	69
16	Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. Journal of Extracellular Vesicles, 2015, 4, 28388.	12.2	187
17	Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Letters, 2015, 589, 4071-4078.	2.8	72
18	The Clinical Relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 Network in Chemoresistant Non-small-cell Lung Cancer. Molecular Therapy, 2015, 23, 717-727.	8.2	218

Νοβυγοςηι Κοςακά

#	Article	IF	CITATIONS
19	Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 2015, 98, 2920-2933.	3.4	269
20	Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nature Communications, 2015, 6, 6716.	12.8	547
21	On-Chip Immunoelectrophoresis of Extracellular Vesicles Released from Human Breast Cancer Cells. PLoS ONE, 2015, 10, e0123603.	2.5	71
22	Extracellular vesicles in lung microenvironment and pathogenesis. Trends in Molecular Medicine, 2015, 21, 533-542.	6.7	149
23	Exosomal miRNAs from Peritoneum Lavage Fluid as Potential Prognostic Biomarkers of Peritoneal Metastasis in Gastric Cancer. PLoS ONE, 2015, 10, e0130472.	2.5	141
24	Dark side of the exosome: the role of the exosome in cancer metastasis and targeting the exosome as a strategy for cancer therapy. Future Oncology, 2014, 10, 671-681.	2.4	48
25	Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 2014, 7, ra63.	3.6	558
26	Circulating MicroRNAs in Drug Safety Assessment for Hepatic and Cardiovascular Toxicity: The Latest Biomarker Frontier?. Molecular Diagnosis and Therapy, 2014, 18, 121-126.	3.8	13
27	A paradigm shift for extracellular vesicles as small RNA carriers: from cellular waste elimination to therapeutic applications. Drug Delivery and Translational Research, 2014, 4, 31-37.	5.8	39
28	Profiling of circulating microRNAs for prostate cancer biomarker discovery. Drug Delivery and Translational Research, 2014, 4, 19-30.	5.8	84
29	Clinical Relevance and Therapeutic Significance of MicroRNA-133a Expression Profiles and Functions in Malignant Osteosarcoma-Initiating Cells. Stem Cells, 2014, 32, 959-973.	3.2	61
30	The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics, 2014, 14, 412-425.	2.2	134
31	Physiological and pathological relevance of secretory microRNAs and a perspective on their clinical application. Biological Chemistry, 2014, 395, 365-373.	2.5	11
32	RPN2-mediated glycosylation of tetraspanin CD63 regulates breast cancer cell malignancy. Molecular Cancer, 2014, 13, 134.	19.2	84
33	Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nature Communications, 2014, 5, 3591.	12.8	450
34	ä ¹³ ä,RNAã«ã,^ã,‹ä ¹³ 奼^仔)ã;ã®æ©Ÿèf½ä¼é³ã®å•èf½æ€§ ä ¹³ ä,ã«è¦‹ã,ãã•ã,Œã¥æ–°è¦ç"Ÿç†å›å• Kaş	gakwT o Sei	bu to su, 2014,
35	Time-Dependent Expression Profiles of microRNAs and mRNAs in Rat Milk Whey. PLoS ONE, 2014, 9, e88843.	2.5	73

Exosome in disease biology, diagnosis, and therapy. Inflammation and Regeneration, 2014, 34, 233-239. 3.7 3

Nobuyoshi Kosaka

#	Article	IF	CITATIONS
37	miR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology, 2013, 58, 1153-1165.	7.3	119
38	The therapeutic potential of mesenchymal stem cellâ€derived extracellular vesicles. Proteomics, 2013, 13, 1637-1653.	2.2	332
39	Exosomal tumor-suppressive microRNAs as novel cancer therapy. Advanced Drug Delivery Reviews, 2013, 65, 376-382.	13.7	72
40	Therapeutic Effects of MicroRNA-582-5p and -3p on the Inhibition of Bladder Cancer Progression. Molecular Therapy, 2013, 21, 610-619.	8.2	98
41	Neutral Sphingomyelinase 2 (nSMase2)-dependent Exosomal Transfer of Angiogenic MicroRNAs Regulate Cancer Cell Metastasis. Journal of Biological Chemistry, 2013, 288, 10849-10859.	3.4	629
42	Trash or Treasure: extracellular microRNAs and cell-to-cell communication. Frontiers in Genetics, 2013, 4, 173.	2.3	144
43	Comparative marker analysis of extracellular vesicles in different human cancer types. Journal of Extracellular Vesicles, 2013, 2, .	12.2	321
44	Micromanaging Iron Homeostasis. Journal of Biological Chemistry, 2012, 287, 34110-34119.	3.4	70
45	Competitive Interactions of Cancer Cells and Normal Cells via Secretory MicroRNAs. Journal of Biological Chemistry, 2012, 287, 1397-1405.	3.4	237
46	Comprehensive miRNA Expression Analysis in Peripheral Blood Can Diagnose Liver Disease. PLoS ONE, 2012, 7, e48366.	2.5	149
47	MicroRNA-143 Regulates Human Osteosarcoma Metastasis by Regulating Matrix Metalloprotease-13 Expression. Molecular Therapy, 2011, 19, 1123-1130.	8.2	240
48	The Progression of Liver Fibrosis Is Related with Overexpression of the miR-199 and 200 Families. PLoS ONE, 2011, 6, e16081.	2.5	248
49	Structural and biological properties of erythropoietin in Xenopus laevis. Experimental Hematology, 2010, 38, 363-372.	0.4	32
50	Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Science, 2010, 101, 2087-2092.	3.9	1,180
51	Secretory microRNAs as a versatile communication tool. Communicative and Integrative Biology, 2010, 3, 478-481.	1.4	132
52	Systemic Delivery of Synthetic MicroRNA-16 Inhibits the Growth of Metastatic Prostate Tumors via Downregulation of Multiple Cell-cycle Genes. Molecular Therapy, 2010, 18, 181-187.	8.2	399
53	Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. Journal of Biological Chemistry, 2010, 285, 17442-17452.	3.4	1,657
54	Versatile Applications of microRNA in Anti-Cancer Drug Discovery: From Therapeutics to Biomarkers. Current Drug Discovery Technologies, 2010, 7, 95-105.	1.2	24

Nobuyoshi Kosaka

#	Article	IF	CITATIONS
55	Erythropoietin-Inducible MicroRNA-362 Contributes to Erythropoiesis Via the Suppression of Histone Deacetylase 3 Blood, 2010, 116, 2603-2603.	1.4	1
56	Pleiotropic function of FGFâ€4: Its role in development and stem cells. Developmental Dynamics, 2009, 238, 265-276.	1.8	37
57	MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers, 2009, 14, 529-538.	1.9	204
58	ldentification of erythropoietinâ€induced microRNAs in haematopoietic cells during erythroid differentiation. British Journal of Haematology, 2008, 142, 293-300.	2.5	44
59	Expression of miR-188 and 362 Induced by Erythropoietin Stimulation in a Human Erythrocytic Leukemia Cell Line Blood, 2007, 110, 2210-2210.	1.4	0
60	Erythropoietin Lacking Hypoxia Responsive Element in 3′ Untranslated Region Stimulates Hepatic Erythropoiesis in Anemic Xenopus Blood, 2007, 110, 4057-4057.	1.4	0
61	Regulation of miR-210 Generation in Response to Hypoxia in Erythrocytic Cells Blood, 2007, 110, 1247-1247.	1.4	0
62	FGFâ€4 regulates neural progenitor cell proliferation and neuronal differentiation. FASEB Journal, 2006, 20, 1484-1485.	0.5	52
63	Alternation of Cellular Morphology and Proliferation Induced by microRNA in Human Leukemia Cell Line, UT-7/EPO Blood, 2006, 108, 4203-4203.	1.4	Ο
64	Structure of Erythropoietin in African Clawed Frogs, Xenopus laevis, and Its Role in the Liver Erythropoiesis Blood, 2006, 108, 1148-1148.	1.4	0
65	Expression of Erythropoietin Receptor–Like Molecule in Xenopus laevis and Erythrocytopenia upon Administration of Its Recombinant Soluble Form. Journal of Biochemistry, 2005, 138, 167-175.	1.7	21
66	Circulating Erythroid Progenitors and Predominant Contribution of Liver to Erythropoiesis in Adult Xenopus laevis Blood, 2005, 106, 4213-4213.	1.4	0
67	Identification and Expression of Two microRNA Primary Transcripts, pri-miR-223 and pri-miR-10a, in Hematopoietic Cell Lines during Cytokine-Stimulated Differentiation Blood, 2005, 106, 1747-1747.	1.4	0
68	Hematological Changes in Cold-Acclimated Xenopus laevis Blood, 2005, 106, 4212-4212.	1.4	0
69	Atelocollagen-mediated synthetic small interfering RNA delivery for effective gene silencing in vitro and in vivo. Nucleic Acids Research, 2004, 32, e109-e109.	14.5	303
70	Expression of Erythropoietin Receptor-Like Molecule in Xenopus laevis (xeEPOR) and the Development of Anemia by the Administration of Its Recombinant Soluble Form Blood, 2004, 104, 2783-2783.	1.4	8