
Marek Bodnar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of drug resistance: Comparison of two hypotheses for slowly proliferating tumors on the example of lowâ€grade gliomas. Mathematical Methods in the Applied Sciences, 2022, 45, 4161-4184.	2.3	2
2	Evolution of populations with strategy-dependent time delays. Physical Review E, 2021, 103, 012414.	2.1	5
3	Three-Player Games with Strategy-Dependent Time Delays. Dynamic Games and Applications, 2020, 10, 664-675.	1.9	9
4	Justification of quasi-stationary approximation in models of gene expression of aÂself-regulating protein. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105166.	3.3	1
5	Cancer as a Killer Tsunami. , 2020, , 62-63.		0
6	Mathematical and numerical analysis of low-grade gliomas model and the effects of chemotherapy. Communications in Nonlinear Science and Numerical Simulation, 2019, 72, 552-564.	3.3	8
7	Mathematical analysis of a generalised model of chemotherapy for low grade gliomas. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 2149-2167.	0.9	1
8	Distributed delays in Hes1 gene expression model. Discrete and Continuous Dynamical Systems - Series B, 2019, 24, 2125-2147.	0.9	1
9	Analysis of a delay differential equations modelling tumor growth with angiogenesis. Mathematica Applicanda, 2019, 47, .	0.0	0
10	The NF-κ B network as an example of a regulatory network with a positive and negative feedback loop. Mathematica Applicanda, 2019, 47, .	0.0	0
11	Some remarks on modelling of drug resistance for low grade gliomas. Mathematica Applicanda, 2019, 47, .	0.0	1
12	Mathematical analysis of a generalised p53-Mdm2 protein gene expression model. Applied Mathematics and Computation, 2018, 328, 26-44.	2.2	3
13	Influence of distributed delays on the dynamics of aÂgeneralized immune system cancerous cells interactions model. Communications in Nonlinear Science and Numerical Simulation, 2018, 54, 389-415.	3.3	10
14	On the nonlocal discretization of the simplified Anderson-May model of viral infection. Mathematica Applicanda, 2018, 46, .	0.0	0
15	AÂmathematical model of low grade gliomas treated with temozolomide and its therapeutical implications. Mathematical Biosciences, 2017, 288, 1-13.	1.9	24
16	Mathematical model for path selection by ants between nest and food source. Mathematical Biosciences, 2017, 285, 14-24.	1.9	0
17	A mathematical model describes the malignant transformation of low grade gliomas: Prognostic implications. PLoS ONE, 2017, 12, e0179999.	2.5	26
18	Angiogenesis model with Erlang distributed delays. Mathematical Biosciences and Engineering, 2017, 14, 1-15.	1.9	3

Marek Bodnar

#	Article	IF	CITATIONS
19	Deterministic and Stochastic Study for a Microscopic Angiogenesis Model: Applications to the Lewis Lung Carcinoma. PLoS ONE, 2016, 11, e0155553.	2.5	1
20	Delays do not cause oscillations in aÂcorrected model of humoral mediated immune response. Applied Mathematics and Computation, 2016, 289, 7-21.	2.2	4
21	Asymptotic dynamics of some t-periodic one-dimensional model with application to prostate cancer immunotherapy. Journal of Mathematical Biology, 2016, 73, 867-883.	1.9	6
22	Stability analysis of the family of tumour angiogenesis models with distributed time delays. Communications in Nonlinear Science and Numerical Simulation, 2016, 31, 124-142.	3.3	11
23	General model of a cascade of reactions with time delays: Global stability analysis. Journal of Differential Equations, 2015, 259, 777-795.	2.2	8
24	Dynamic Oligopoly with Sticky Prices: Off-Steady-state Analysis. Dynamic Games and Applications, 2015, 5, 568-598.	1.9	17
25	Logistic Equation with Treatment Function and Discrete Delays. Mathematical Population Studies, 2014, 21, 166-183.	2.2	5
26	Tractable Model of Malignant Gliomas Immunotherapy with Discrete Time Delays. Mathematical Population Studies, 2014, 21, 127-145.	2.2	1
27	A modified van der Pol equation with delay in a description of the heart action. International Journal of Applied Mathematics and Computer Science, 2014, 24, 853-863.	1.5	14
28	Mathematical modelling of immune reaction against gliomas: Sensitivity analysis and influence of delays. Nonlinear Analysis: Real World Applications, 2013, 14, 1601-1620.	1.7	22
29	Logistic type equations with discrete delay and quasi-periodic suppression rate. Applied Mathematics Letters, 2013, 26, 607-611.	2.7	9
30	Existence and stability of oscillating solutions for a class of delay differential equations. Nonlinear Analysis: Real World Applications, 2013, 14, 1780-1794.	1.7	6
31	Friction dominated dynamics of interacting particles locally close to a crystallographic lattice. Mathematical Methods in the Applied Sciences, 2013, 36, 1206-1228.	2.3	10
32	Model of tumour angiogenesis analysis of stability with respect to delays. Mathematical Biosciences and Engineering, 2013, 10, 19-35.	1.9	12
33	Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10, 551-563.	1.9	15
34	A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences and Engineering, 2013, 10, 861-872.	1.9	13
35	Delay can stabilize: Love affairs dynamics. Applied Mathematics and Computation, 2012, 219, 3923-3937.	2.2	21
36	Stability of delay induced oscillations in gene expression of Hes1 protein model. Nonlinear Analysis: Real World Applications, 2012, 13, 2227-2239.	1.7	16

Marek Bodnar

#	Article	IF	CITATIONS
37	About a generalized model of lymphoma. Journal of Mathematical Analysis and Applications, 2012, 386, 813-829.	1.0	5
38	Analysis of biochemical reactions models with delays. Journal of Mathematical Analysis and Applications, 2011, 376, 74-83.	1.0	25
39	Stochastic Models of Gene Expression with Delayed Degradation. Bulletin of Mathematical Biology, 2011, 73, 2231-2247.	1.9	39
40	Negativity of delayed induced oscillations in a simple linear DDE. Applied Mathematics Letters, 2011, 24, 982-986.	2.7	7
41	New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model. Mathematical Biosciences and Engineering, 2011, 8, 591-603.	1.9	19
42	ANGIOGENESIS MODEL WITH CARRYING CAPACITY DEPENDING ON VESSEL DENSITY. Journal of Biological Systems, 2009, 17, 1-25.	1.4	31
43	A model of immune system with time-dependent immune reactivity. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 1049-1058.	1.1	13
44	Influence of time delays on the Hahnfeldt et al. angiogenesis model dynamics. Applicationes Mathematicae, 2009, 36, 251-262.	0.1	5
45	Model of AIDS-related tumour with time delay. Applicationes Mathematicae, 2009, 36, 263-278.	0.1	7
46	Global stability and the Hopf bifurcation for some class of delay differential equation. Mathematical Methods in the Applied Sciences, 2008, 31, 1197-1207.	2.3	11
47	THREE TYPES OF SIMPLE DDE'S DESCRIBING TUMOR GROWTH. Journal of Biological Systems, 2007, 15, 453-471.	1.4	50
48	An integro-differential equation arising as a limit of individual cell-based models. Journal of Differential Equations, 2006, 222, 341-380.	2.2	97
49	Derivation of macroscopic equations for individual cell-based models: a formal approach. Mathematical Methods in the Applied Sciences, 2005, 28, 1757-1779.	2.3	69
50	Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2, 461-472.	1.9	45
51	Time delay in necrotic core formation. Mathematical Biosciences and Engineering, 2005, 2, 461-72.	1.9	2
52	On the differences and similarities of the first order delay and ordinary differential equations. Journal of Mathematical Analysis and Applications, 2004, 300, 172-188.	1.0	4
53	Time delays in regulatory apoptosis for solid avascular tumour. Mathematical and Computer Modelling, 2003, 37, 1211-1220.	2.0	30
54	Time delays in proliferation process for solid avascular tumour. Mathematical and Computer Modelling, 2003, 37, 1201-1209.	2.0	65

#	Article	IF	CITATIONS
55	Norm conservation for generalized kinetic population models with delay. Mathematical and Computer Modelling, 2002, 35, 765-778.	2.0	0
56	Periodic dynamics in a model of immune system. Applicationes Mathematicae, 2000, 27, 113-126.	0.1	8