Biljana M TodorovićMarković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2732075/publications.pdf

Version: 2024-02-01

96 papers

3,754 citations

172457 29 h-index 59 g-index

98 all docs 98 docs citations 98 times ranked 5929 citing authors

#	Article	IF	CITATIONS
1	Photoactive graphene quantum dots/bacterial cellulose hydrogels: Structural, mechanical, and proâ€oxidant study. Journal of Applied Polymer Science, 2022, 139, 51996.	2.6	4
2	Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1796-1805.	3.4	25
3	Bactericidal and antioxidant bacterial cellulose hydrogels doped with chitosan as potential urinary tract infection biomedical agent. RSC Advances, 2021, 11, 8559-8568.	3.6	11
4	One-step preparation of gold nanoparticles - exfoliated graphene composite by gamma irradiation at low doses for photothermal therapy applications. Materials Characterization, 2021, 173, 110944.	4.4	3
5	Photoactive and antioxidant nanochitosan dots/biocellulose hydrogels for wound healing treatment. Materials Science and Engineering C, 2021, 122, 111925.	7.3	26
6	Enhanced visible light-triggered antibacterial activity of carbon quantum dots/polyurethane nanocomposites by gamma rays induced pre-treatment. Radiation Physics and Chemistry, 2021, 185, 109499.	2.8	15
7	Chronic wound dressings – Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. International Journal of Biological Macromolecules, 2021, 191, 315-323.	7.5	17
8	Graphene quantum dot antioxidant and proautophagic actions protect SH-SY5Y neuroblastoma cells from oxidative stress-mediated apoptotic death. Free Radical Biology and Medicine, 2021, 177, 167-180.	2.9	8
9	Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea. Materials Science and Engineering C, 2020, 109, 110539.	7.3	42
10	Highly Efficient Antioxidant F- and Cl-Doped Carbon Quantum Dots for Bioimaging. ACS Sustainable Chemistry and Engineering, 2020, 8, 16327-16338.	6.7	71
11	Gamma irradiation of graphene quantum dots with ethylenediamine: Antioxidant for ion sensing. Ceramics International, 2020, 46, 23611-23622.	4.8	16
12	Self-assembly of carbon based nanoparticles films by Langmuir-Blodgett method. Journal of the Serbian Chemical Society, 2020, 85, 1095-1127.	0.8	11
13	Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 2019, 200, 111647.	3.8	39
14	Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications. Ceramics International, 2019, 45, 17006-17013.	4.8	46
15	Antibacterial photodynamic activity of carbon quantum dots/polydimethylsiloxane nanocomposites against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae. Photodiagnosis and Photodynamic Therapy, 2019, 26, 342-349.	2.6	59
16	Gamma ray assisted modification of carbon quantum dot/polyurethane nanocomposites: structural, mechanical and photocatalytic study. RSC Advances, 2019, 9, 6278-6286.	3.6	10
17	Structural, mechanical, and antibacterial features of curcumin/polyurethane nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47283.	2.6	19
18	Graphene quantum dots inhibit T cell-mediated neuroinflammation in rats. Neuropharmacology, 2019, 146, 95-108.	4.1	38

#	Article	IF	Citations
19	Treating of Aquatic Pollution by Carbon Quantum Dots. Engineering Materials, 2019, , 121-145.	0.6	1
20	Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study. Materials Chemistry and Physics, 2018, 213, 157-167.	4.0	14
21	Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir–Blodgett Thin Films. ACS Sustainable Chemistry and Engineering, 2018, 6, 4154-4163.	6.7	102
22	Carbon Quantum Dots Modified Polyurethane Nanocomposite as Effective Photocatalytic and Antibacterial Agents. ACS Biomaterials Science and Engineering, 2018, 4, 3983-3993.	5.2	108
23	Photo-induced antibacterial activity of four graphene based nanomaterials on a wide range of bacteria. RSC Advances, 2018, 8, 31337-31347.	3.6	69
24	Simple route for the preparation of graphene/poly(styreneâ€∢i>bâ€butadieneâ€∢i>bâ€styrene) nanocomposite films with enhanced electrical conductivity and hydrophobicity. Polymer International, 2018, 67, 1118-1127.	3.1	4
25	Enhancing photoluminescence of graphene quantum dots by thermal annealing of the graphite precursor. Materials Research Bulletin, 2017, 93, 183-193.	5.2	36
26	Antibacterial potential of electrochemically exfoliated graphene sheets. Journal of Colloid and Interface Science, 2017, 500, 30-43.	9.4	31
27	Graphene quantum dots and fullerenol as new carbon sources for single–layer and bi–layer graphene synthesis by rapid thermal annealing method. Materials Research Bulletin, 2017, 88, 114-120.	5.2	9
28	Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials, 2017, 146, 13-28.	11.4	84
29	Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Advances, 2017, 7, 36081-36092.	3.6	31
30	Effects of low gamma irradiation dose on the photoluminescence properties of graphene quantum dots. Optical and Quantum Electronics, 2016, 48, 1.	3.3	13
31	Semi-transparent, conductive thin films of electrochemical exfoliated graphene. RSC Advances, 2016, 6, 39275-39283.	3.6	29
32	c-Jun N-terminal kinase-dependent apoptotic photocytotoxicity of solvent exchange-prepared curcumin nanoparticles. Biomedical Microdevices, 2016, 18, 37.	2.8	13
33	Rapid thermal annealing of nickel-carbon nanowires for graphene nanoribbons formation. Synthetic Metals, 2016, 218, 43-49.	3.9	15
34	SYNTHESIS AND CHARACTERIZATION OF ELECTROCHEMICALLY EXFOLIATED GRAPHENE-MOLYBDOPHOSPHATE HYBRID MATERIALS FOR CHARGE STORAGE DEVICES. Electrochimica Acta, 2016, 217, 34-46.	5.2	4
35	Raman spectroscopy study of graphene thin films synthesized from solid precursor. Optical and Quantum Electronics, 2016, 48, 1.	3.3	6
36	Raman study of the interactions between highly ordered pyrolytic graphite (HOPG) and polyoxometalates: The effects of acid concentration. Journal of the Serbian Chemical Society, 2016, 81, 777-787.	0.8	4

#	Article	lF	CITATIONS
37	Facile synthesis of water-soluble curcumin nanocrystals. Journal of the Serbian Chemical Society, 2015, 80, 63-72.	0.8	10
38	The effect of annealing temperature and time on synthesis of graphene thin films by rapid thermal annealing. Synthetic Metals, 2015, 209, 461-467.	3.9	21
39	Modification of Structural and Luminescence Properties of Graphene Quantum Dots by Gamma Irradiation and Their Application in a Photodynamic Therapy. ACS Applied Materials & Diterfaces, 2015, 7, 25865-25874.	8.0	94
40	Monolayer graphene films through nickel catalyzed transformation of fullerol and graphene quantum dots: a Raman spectroscopy study. Physica Scripta, 2014, T162, 014030.	2 . 5	8
41	Raman spectroscopy of graphene nanoribbons synthesized by longitudinal unzipping of multiwall carbon nanotubes. Physica Scripta, 2014, T162, 014023.	2.5	16
42	Gamma ray-assisted irradiation of few-layer graphene films: a Raman spectroscopy study. Physica Scripta, 2014, T162, 014025.	2.5	7
43	Photodynamic antibacterial effect of graphene quantum dots. Biomaterials, 2014, 35, 4428-4435.	11.4	341
44	Multifractal characterization of single wall carbon nanotube thin films surface upon exposure to optical parametric oscillator laser irradiation. Applied Surface Science, 2014, 289, 97-106.	6.1	44
45	Large Graphene Quantum Dots Alleviate Immune-Mediated Liver Damage. ACS Nano, 2014, 8, 12098-12109.	14.6	82
46	Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots. Synthetic Metals, 2014, 198, 150-154.	3.9	27
47	Structural Analysis of Single Wall Carbon Nanotubes Exposed to Oxidation and Reduction Conditions in the Course of Gamma Irradiation. Journal of Physical Chemistry C, 2014, 118, 16147-16155.	3.1	7
48	Novel method for graphene functionalization. Physica Scripta, 2014, T162, 014024.	2.5	8
49	Raman spectroscopy study of carbon-doped resorcinol-formaldehyde thin films. Physica Scripta, 2013, T157, 014039.	2.5	2
50	Comparative analysis of different methods for graphene nanoribbon synthesis. Hemijska Industrija, 2013, 67, 147-156.	0.7	0
51	Surface modification of single-wall carbon nanotube thin films irradiated by microwaves: a Raman spectroscopy study. Physica Scripta, 2013, T157, 014040.	2.5	5
52	Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress. Archives of Toxicology, 2012, 86, 1809-1827.	4.2	87
53	Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials, 2012, 33, 7084-7092.	11.4	372
54	Raman study of single wall carbon nanotube thin films treated by laser irradiation and dynamic and isothermal oxidation. Journal of Raman Spectroscopy, 2012, 43, 1413-1422.	2.5	14

#	Article	IF	Citations
55	Comparison of structural properties of pristine and gamma irradiated single-wall carbon nanotubes: Effects of medium and irradiation dose. Materials Characterization, 2012, 72, 37-45.	4.4	30
56	Preparation of highly conductive carbon cryogel based on pristine graphene. Synthetic Metals, 2012, 162, 743-747.	3.9	26
57	Gamma ray assisted fabrication of fluorescent oligographene nanoribbons. Materials Research Bulletin, 2012, 47, 1996-2000.	5.2	6
58	Covalent modification of single wall carbon nanotubes upon gamma irradiation in aqueous media. Hemijska Industrija, 2011, 65, 479-487.	0.7	4
59	In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 2011, 32, 1121-1129.	11.4	510
60	The effect of oxidation on structural and electrical properties of single wall carbon nanotubes. Hemijska Industrija, 2011, 65, 363-370.	0.7	2
61	Nucleation of calcium hydroxyapatite thin films from simulated body fluid. Surface Engineering, 2010, 26, 532-535.	2.2	7
62	Oxidative stress-mediated hemolytic activity of solvent exchange-prepared fullerene (C ₆₀) nanoparticles. Nanotechnology, 2010, 21, 375102.	2.6	31
63	Singlet oxygen generation by higher fullerene-based colloids. Journal of the Serbian Chemical Society, 2010, 75, 965-973.	0.8	7
64	A novel method for the functionalization of \hat{l}^3 -irradiated single wall carbon nanotubes with DNA. Nanotechnology, 2009, 20, 445602.	2.6	30
65	Comparative study on modification of single wall carbon nanotubes by sodium dodecylbenzene sulfonate and melamine sulfonate superplasticiser. Applied Surface Science, 2009, 255, 6359-6366.	6.1	37
66	The protection of cells from nitric oxide-mediated apoptotic death by mechanochemically synthesized fullerene (C60) nanoparticles. Biomaterials, 2009, 30, 2319-2328.	11.4	34
67	Opposite effects of nanocrystalline fullerene (C60) on tumour cell growth in vitro and in vivo and a possible role of immunosupression in the cancer-promoting activity of C60. Biomaterials, 2009, 30, 6940-6946.	11.4	42
68	Surface chemical modification of fullerene by mechanochemical treatment. Applied Surface Science, 2009, 255, 7537-7541.	6.1	18
69	Modulation of Tumor Necrosis Factor-mediated Cell Death by Fullerenes. Pharmaceutical Research, 2008, 25, 1365-1376.	3.5	20
70	Atomic force microscopy study of fullerene-based colloids. Applied Surface Science, 2008, 255, 3283-3288.	6.1	16
71	Synthesis of amorphous carbon nitride by single and multiple charged nitrogen ion bombardment of fullerene thin films. Journal Physics D: Applied Physics, 2007, 40, 4264-4270.	2.8	1
72	Multiple Charged Nitrogen Ion Beam Irradiation of Fullerene Thin Films. Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15, 113-125.	2.1	3

#	Article	IF	CITATIONS
73	The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials, 2007, 28, 5437-5448.	11.4	112
74	Aloe emodin inhibits the cytotoxic action of tumor necrosis factor. European Journal of Pharmacology, 2007, 568, 248-259.	3.5	38
75	Multiple mechanisms underlying the anticancer action of nanocrystalline fullerene. European Journal of Pharmacology, 2007, 568, 89-98.	3.5	88
76	Structural modification of fullerene thin films by highly charged iron ions. Applied Physics A: Materials Science and Processing, 2007, 89, 749-754.	2.3	7
77	Synthesis of amorphous boron carbide by single and multiple charged boron ions bombardment of fullerene thin films. Applied Surface Science, 2007, 253, 4029-4035.	6.1	13
78	Comparative Process Analysis of Fullerene Production by the Arc and the Radio-Frequency Discharge Methods. Journal of Nanoscience and Nanotechnology, 2007, 7, 1357-1369.	0.9	16
79	Distinct Cytotoxic Mechanisms of Pristine versus Hydroxylated Fullerene. Toxicological Sciences, 2006, 91, 173-183.	3.1	264
80	Inactivation of nanocrystalline C60 cytotoxicity by î³-irradiation. Biomaterials, 2006, 27, 5049-5058.	11.4	64
81	Effects of Precursors and Plasma Parameters on Fullerene Synthesis in RF Thermal Plasma Reactor. Plasma Chemistry and Plasma Processing, 2006, 26, 597-608.	2.4	28
82	RF thermal plasma processing of fullerenes. Journal Physics D: Applied Physics, 2006, 39, 320-326.	2.8	9
83	Influence of the precursor on fullerene synthesis in a RF thermal plasma reactor. Chemical Industry and Chemical Engineering Quarterly, 2006, 12, 246-250.	0.7	0
84	Optical Emission Study of RF Thermal Plasma During Fullerene Synthesis. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 215-226.	2.1	3
85	Optical diagnostics of fullerene synthesis in the RF thermal plasma process. Journal of the Serbian Chemical Society, 2005, 70, 79-85.	0.8	2
86	Optical Emission Measurements of Rotational Temperature of C2Radicals in Fullerene Processing. Fullerenes Nanotubes and Carbon Nanostructures, 2004, 12, 647-657.	2.1	7
87	Temperature measurement of carbon arc plasma in helium. Carbon, 2003, 41, 369-371.	10.3	22
88	Efficient synthesis of fullerenes in RF thermal plasma reactor. Chemical Physics Letters, 2003, 378, 434-439.	2.6	31
89	Experimental study of physical parameters significant in fullerene synthesis. Journal of the Serbian Chemical Society, 2003, 68, 543-547.	0.8	1
90	SYNTHESIS OF FULLERENES BY HOLLOW CATHODE ARC. Fullerenes Nanotubes and Carbon Nanostructures, 2002, 10, 81-87.	2.1	5

#	Article	IF	CITATIONS
91	Kinetic Model of Metallocarbohedrene Formation in Arc Plasma Generator. Fullerenes, Nanotubes, and Carbon Nanostructures, 2000, 8, 27-38.	0.6	1
92	Kinetic Model of Metallofullerene Formation in Contact Arc Generator. Fullerenes, Nanotubes, and Carbon Nanostructures, 1999, 7, 713-724.	0.6	0
93	Kinetics of Fullerene Formation in a Contact Arc Generator. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 1057-1068.	0.6	9
94	Model of Improved Arc Generator for Fullerene Production. Fullerenes, Nanotubes, and Carbon Nanostructures, 1997, 5, 903-918.	0.6	2
95	The effect of rapid thermal annealing on structural and electrical properties of TiB2 thin films. Thin Solid Films, 1997, 300, 272-277.	1.8	28
96	Sputtering yield and morphological changes of TiB2 coatings induced by different incident beams. Nuclear Instruments & Methods in Physics Research B, 1996, 115, 523-527.	1.4	2