Min-Chuan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2732032/publications.pdf Version: 2024-02-01

MIN-CHILAN HUANC

#	Article	IF	CITATIONS
1	C1GALT1 expression predicts a favorable prognosis and suppresses malignant phenotypes via TrkA signaling in neuroblastoma. Oncogenesis, 2022, 11, 8.	2.1	5
2	<scp>Anti 1GALT1</scp> Autoantibody Is a Novel Prognostic Biomarker for Patients With Head and Neck Cancer. Laryngoscope, 2021, 131, E196-E202.	1.1	2
3	C1GALT1 high expression is associated with poor survival of patients with pancreatic ductal adenocarcinoma and promotes cell invasiveness through integrin αv. Oncogene, 2021, 40, 1242-1254.	2.6	21
4	C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene, 2020, 39, 2724-2740.	2.6	32
5	Lactoferrin promotes hair growth in mice and increases dermal papilla cell proliferation through Erk/Akt and Wnt signaling pathways. Archives of Dermatological Research, 2019, 311, 411-420.	1.1	21
6	Silencing of MUC20 suppresses the malignant character of pancreatic ductal adenocarcinoma cells through inhibition of the HGF/MET pathway. Oncogene, 2018, 37, 6041-6053.	2.6	38
7	C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene, 2018, 37, 5780-5793.	2.6	45
8	The O-glycosylating enzyme GALNT2 suppresses the malignancy of gastric adenocarcinoma by reducing EGFR activities. American Journal of Cancer Research, 2018, 8, 1739-1751.	1.4	7
9	The lactoferricin B-derived peptide, LfB17-34, induces melanogenesis in B16F10 cells. International Journal of Molecular Medicine, 2017, 39, 595-602.	1.8	13
10	C1GALT1 Seems to Promote In Vitro Disease Progression in Ovarian Cancer. International Journal of Gynecological Cancer, 2017, 27, 863-871.	1.2	17
11	A multidisciplinary team care approach improves outcomes in high-risk pediatric neuroblastoma patients. Oncotarget, 2017, 8, 4360-4372.	0.8	19
12	GALNT6 expression enhances aggressive phenotypes of ovarian cancer cells by regulating EGFR activity. Oncotarget, 2017, 8, 42588-42601.	0.8	31
13	Mucin glycosylating enzyme GALNT2 suppresses malignancy in gastric adenocarcinoma by reducing MET phosphorylation. Oncotarget, 2016, 7, 11251-11262.	0.8	39
14	Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. Journal of Hematology and Oncology, 2016, 9, 100.	6.9	93
15	MUC20 promotes aggressive phenotypes of epithelial ovarian cancer cells via activation of the integrin β1 pathway. Gynecologic Oncology, 2016, 140, 131-137.	0.6	34
16	Knockdown of GALNT1 suppresses malignant phenotype of hepatocellular carcinoma by suppressing EGFR signaling. Oncotarget, 2015, 6, 5650-5665.	0.8	42
17	β-1,4-galactosyltransferase III suppresses extravillous trophoblast invasion through modifying β1-integrin glycosylation. Placenta, 2015, 36, 357-364.	0.7	25
18	Up-regulation of C1GALT1 promotes breast cancer cell growth through MUC1-C signaling pathway. Oncotarget, 2015, 6, 6123-6135.	0.8	55

Min-Chuan Huang

#	Article	IF	CITATIONS
19	\hat{l}^2 -1,4-Calactosyltransferase III suppresses \hat{l}^2 1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer. Carcinogenesis, 2014, 35, 1258-1266.	1.3	31
20	Calreticulin activates β1 integrin via fucosylation by fucosyltransferase 1 in J82 human bladder cancer cells. Biochemical Journal, 2014, 460, 69-80.	1.7	24
21	The molecular chaperone cosmc enhances malignant behaviors of colon cancer cells via activation of Akt and ERK. Molecular Carcinogenesis, 2014, 53, E62-71.	1.3	27
22	GALNT2 enhances migration and invasion of oral squamous cell carcinoma by regulating EGFR glycosylation and activity. Oral Oncology, 2014, 50, 478-484.	0.8	74
23	C1GALT1 Promotes Invasive Phenotypes of Hepatocellular Carcinoma Cells by Modulating Integrin \hat{l}^21 Glycosylation and Activity. PLoS ONE, 2014, 9, e94995.	1.1	37
24	C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget, 2014, 5, 2096-2106.	0.8	55
25	β1, 4- <i>N</i> -acetylgalactosaminyltransferase III modulates cancer stemness through EGFR signaling pathway in colon cancer cells. Oncotarget, 2014, 5, 3673-3684.	0.8	47
26	GALNT2 suppresses malignant phenotypes through IGF-1 receptor and predicts favorable prognosis in neuroblastoma. Oncotarget, 2014, 5, 12247-12259.	0.8	34
27	Ethosomes in hair dye products as carriers of the major compounds of black tea extracts. International Journal of Dermatology, 2013, 52, 868-875.	0.5	10
28	MUC20 overexpression predicts poor prognosis and enhances EGF-induced malignant phenotypes via activation of the EGFR–STAT3 pathway in endometrial cancer. Gynecologic Oncology, 2013, 128, 560-567.	0.6	35
29	Dermal delivery by niosomes of black tea extract as a sunscreen agent. International Journal of Dermatology, 2013, 52, 239-245.	0.5	29
30	Toll-like receptor 3 expression inhibits cell invasion and migration and predicts a favorable prognosis in neuroblastoma. Cancer Letters, 2013, 336, 338-346.	3.2	24
31	β-1,4-Galactosyltransferase III Enhances Invasive Phenotypes Via β1-Integrin and Predicts Poor Prognosis in Neuroblastoma. Clinical Cancer Research, 2013, 19, 1705-1716.	3.2	41
32	C1GALT1 Enhances Proliferation of Hepatocellular Carcinoma Cells via Modulating MET Glycosylation and Dimerization. Cancer Research, 2013, 73, 5580-5590.	0.4	68
33	B3 <scp>GNT</scp> 3 expression suppresses cell migration and invasion and predicts favorable outcomes in neuroblastoma. Cancer Science, 2013, 104, 1600-1608.	1.7	38
34	COSMC Is Overexpressed in Proliferating Infantile Hemangioma and Enhances Endothelial Cell Growth via VEGFR2. PLoS ONE, 2013, 8, e56211.	1.1	17
35	Methylcobalamin Facilitates Collateral Sprouting of Donor Axons and Innervation of Recipient Muscle in End-to-Side Neurorrhaphy in Rats. PLoS ONE, 2013, 8, e76302.	1.1	30
36	Calreticulin Mediates Nerve Growth Factor-Induced Neuronal Differentiation. Journal of Molecular Neuroscience, 2012, 47, 571-581.	1.1	16

Min-Chuan Huang

#	Article	IF	CITATIONS
37	Hypoxia-Mediated Down-Regulation of OCTN2 and PPARα Expression in Human Placentas and in BeWo Cells. Molecular Pharmaceutics, 2011, 8, 117-125.	2.3	24
38	B4GALNT3 Expression Predicts a Favorable Prognosis and Suppresses Cell Migration and Invasion via β1 Integrin Signaling in Neuroblastoma. American Journal of Pathology, 2011, 179, 1394-1404.	1.9	34
39	Insulinâ€like growth factor II mRNAâ€binding protein 3 expression predicts unfavorable prognosis in patients with neuroblastoma. Cancer Science, 2011, 102, 2191-2198.	1.7	25
40	Mucin Glycosylating Enzyme GALNT2 Regulates the Malignant Character of Hepatocellular Carcinoma by Modifying the EGF Receptor. Cancer Research, 2011, 71, 7270-7279.	0.4	94
41	MUC1 Expression Is Elevated in Severe Preeclamptic Placentas and Suppresses Trophoblast Cell Invasion via β1-Integrin Signaling. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3759-3767.	1.8	25
42	Notch1 Expression Predicts an Unfavorable Prognosis and Serves as a Therapeutic Target of Patients with Neuroblastoma. Clinical Cancer Research, 2010, 16, 4411-4420.	3.2	42
43	Overexpression of MUC15 activates extracellular signal-regulated kinase 1/2 and promotes the oncogenic potential of human colon cancer cells. Carcinogenesis, 2009, 30, 1452-1458.	1.3	49
44	AMMONIUM HYDROXIDE EXTRACTS FROM BLACK TEA INHIBIT GROWTH, MIGRATION AND INVASION OF COLON CANCER CELLS. Journal of Food Biochemistry, 2008, 32, 201-215.	1.2	0
45	MUC1 Expression Is Increased During Human Placental Development and Suppresses Trophoblast-Like Cell Invasion In Vitro1. Biology of Reproduction, 2008, 79, 233-239.	1.2	34
46	β1,4-N-Acetylgalactosaminyltransferase III Enhances Malignant Phenotypes of Colon Cancer Cells. Molecular Cancer Research, 2007, 5, 543-552.	1.5	33
47	Mucin 15 is expressed in human placenta and suppresses invasion of trophoblast-like cells in vitro. Human Reproduction, 2007, 22, 2723-2732.	0.4	48
48	The α(1,3)-Fucosyltransferase Fuc-TIV, but Not Fuc-TVII, Generates Sialyl Lewis X-like Epitopes Preferentially on Glycolipids. Journal of Biological Chemistry, 2002, 277, 47786-47795.	1.6	39
49	Affinity, Kinetics, and Thermodynamics of E-selectin Binding to E-selectin Ligand-1. Journal of Biological Chemistry, 2001, 276, 31602-31612.	1.6	78
50	P-selectin Glycoprotein Ligand-1 and E-selectin Ligand-1 Are Differentially Modified by Fucosyltransferases Fuc-TIV and Fuc-TVII in Mouse Neutrophils. Journal of Biological Chemistry, 2000, 275, 31353-31360.	1.6	60
51	Characterization of an ADP-ribosylation Factor-like 1 Protein inSaccharomyces cerevisiae. Journal of Biological Chemistry, 1997, 272, 30998-31005.	1.6	82