
Umit S Ozkan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/273198/publications.pdf Version: 2024-02-01

LIMIT S OZKAN

#	Article	IF	CITATIONS
1	Vanadia/titania catalysts in selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis, 1991, 78, 241-255.	0.8	335
2	Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis, 2009, 261, 66-74.	6.2	273
3	Non-metal Catalysts for Dioxygen Reduction in an Acidic Electrolyte. Catalysis Letters, 2006, 109, 115-123.	2.6	239
4	Insights into oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) active sites for nitrogen-doped carbon nanostructures (CNx) in acidic media. Applied Catalysis B: Environmental, 2018, 220, 88-97.	20.2	232
5	Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts. Topics in Catalysis, 2009, 52, 1566-1574.	2.8	204
6	Photostable p-Type Dye-Sensitized Photoelectrochemical Cells for Water Reduction. Journal of the American Chemical Society, 2013, 135, 11696-11699.	13.7	189
7	Investigation of bio-ethanol steam reforming over cobalt-based catalysts. Catalysis Today, 2007, 129, 346-354.	4.4	179
8	Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 15306-15314.	3.1	177
9	Steam reforming of methanol to H2 over nonreduced Zr-containing CuO/ZnO catalysts. Journal of Catalysis, 2004, 223, 340-351.	6.2	176
10	Oxygen reduction reaction activity and surface properties of nanostructured nitrogen-containing carbon. Journal of Molecular Catalysis A, 2007, 264, 73-81.	4.8	173
11	Olivine catalysts for methane- and tar-steam reforming. Applied Catalysis B: Environmental, 2008, 81, 14-26.	20.2	167
12	Oxygen Reduction Reaction Catalysts Prepared from Acetonitrile Pyrolysis over Alumina-Supported Metal Particles. Journal of Physical Chemistry B, 2006, 110, 18374-18384.	2.6	165
13	Cobalt-based catalysts supported on titania and zirconia for the oxidation of nitric oxide to nitrogen dioxide. Journal of Catalysis, 2007, 247, 356-367.	6.2	147
14	Effect of Support Particle Size in Steam Reforming of Ethanol over Co/CeO ₂ Catalysts. ACS Catalysis, 2012, 2, 2335-2348.	11.2	145
15	Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction. Journal of Molecular Catalysis A, 2006, 260, 82-94.	4.8	139
16	Characterization of the Iron Phase in CNx-Based Oxygen Reduction Reaction Catalysts. Journal of Physical Chemistry C, 2007, 111, 1444-1450.	3.1	128
17	Preferential oxidation of carbon monoxide on Co/CeO2 nanoparticles. Applied Catalysis B: Environmental, 2010, 97, 28-35.	20.2	124
18	Effect of lanthanide promotion on catalytic performance of sol–gel Ni/Al2O3 catalysts in steam reforming of propane. Journal of Molecular Catalysis A, 2005, 241, 133-146.	4.8	123

#	Article	IF	CITATIONS
19	Probing the Oxygen Reduction Reaction Active Sites over Nitrogen-Doped Carbon Nanostructures (CN _{<i>x</i>}) in Acidic Media Using Phosphate Anion. ACS Catalysis, 2016, 6, 7249-7259.	11.2	123
20	Preparation of nanostructured nitrogen-containing carbon catalysts for the oxygen reduction reaction from SiO2- and MgO-supported metal particles. Journal of Catalysis, 2006, 243, 395-403.	6.2	119
21	Effect of preparation method on structural characteristics and propane steam reforming performance of Ni–Al2O3 catalysts. Journal of Molecular Catalysis A, 2009, 297, 26-34.	4.8	116
22	Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions. Journal of Catalysis, 2011, 284, 77-89.	6.2	113
23	K/Mo Catalysts Supported over Sol–Gel Silica–Titania Mixed Oxides in the Oxidative Dehydrogenation of Propane. Journal of Catalysis, 2000, 191, 12-29.	6.2	109
24	Changing the Oxygen Mobility in Co/Ceria Catalysts by Ca Incorporation: Implications for Ethanol Steam Reforming. Journal of Physical Chemistry A, 2010, 114, 3796-3801.	2.5	105
25	Complete oxidation of ethanol, acetaldehyde and ethanol/methanol mixtures over copper oxide and copper-chromium oxide catalysts. Industrial & Engineering Chemistry Research, 1993, 32, 1622-1630.	3.7	104
26	A comparison of N-containing carbon nanostructures (CN) and N-coordinated iron–carbon catalysts (FeNC) for the oxygen reduction reaction in acidic media. Journal of Catalysis, 2014, 317, 30-43.	6.2	98
27	Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni–Mo/Al2O3 Catalysts. Journal of Catalysis, 2002, 206, 177-187.	6.2	97
28	Investigation of highly active Fe-Al-Cu catalysts for water-gas shift reaction. Applied Catalysis A: General, 2008, 351, 1-8.	4.3	92
29	Effect of hydrogen sulfide on the catalytic activity of Ni-YSZ cermets. Journal of Molecular Catalysis A, 2008, 282, 9-21.	4.8	91
30	Ethanol steam reforming over Co/CeO2 catalysts: Investigation of the effect of ceria morphology. Applied Catalysis A: General, 2012, 449, 47-58.	4.3	88
31	Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2. Journal of Catalysis, 2005, 234, 463-475.	6.2	83
32	Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: Effect of the Particle Size. ACS Catalysis, 2014, 4, 585-592.	11.2	83
33	Effect of support on the preferential oxidation of CO over cobalt catalysts. Catalysis Communications, 2008, 9, 1465-1471.	3.3	82
34	Use of H ₂ S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media. ACS Catalysis, 2014, 4, 3454-3462.	11.2	81
35	Effect of cobalt precursor on the performance of ceria-supported cobalt catalysts for ethanol steam reforming. Applied Catalysis A: General, 2010, 382, 58-64.	4.3	79
36	The Role of Support Morphology and Impregnation Medium on the Water Gas Shift Activity of Ceria-Supported Copper Catalysts. Journal of Physical Chemistry C, 2010, 114, 18173-18181.	3.1	77

#	Article	IF	CITATIONS
37	Cobalt-Based Catalysts for Ethanol Steam Reforming: An Overview. Energy & Fuels, 2016, 30, 5309-5322.	5.1	77
38	Hydrodeoxygenation of benzofuran over sulfided and reduced Ni–Mo/γ-Al2O3 catalysts: Effect of H2S. Journal of Molecular Catalysis A, 2007, 270, 264-272.	4.8	76
39	Effect of synthesis parameters on the catalytic activity of Co–ZrO2for bio-ethanol steam reforming. Green Chemistry, 2007, 9, 686-694.	9.0	72
40	Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co- doped lanthanum strontium ferrite perovskite cathodes. Applied Catalysis B: Environmental, 2019, 248, 487-503.	20.2	72
41	Performance and Postreaction Characterization of Î ³ -Mo2N Catalysts in Simultaneous Hydrodesulfurization and Hydrodenitrogenation Reactions. Journal of Catalysis, 1997, 172, 294-306.	6.2	69
42	Preferential oxidation of CO (PROX) over CoOx/CeO2 in hydrogen-rich streams: Effect of cobalt loading. Applied Catalysis B: Environmental, 2012, 128, 21-30.	20.2	68
43	Adsorption/Desorption Behavior of Ethanol Steam Reforming Reactants and Intermediates over Supported Cobalt Catalysts. Catalysis Letters, 2011, 141, 43-54.	2.6	67
44	A First-Principles Study of the Role of Quaternary-N Doping on the Oxygen Reduction Reaction Activity and Selectivity of Graphene Edge Sites. Topics in Catalysis, 2013, 56, 1623-1633.	2.8	67
45	Ni-olivine catalysts prepared by thermal impregnation: Structure, steam reforming activity, and stability. Applied Catalysis A: General, 2008, 341, 43-49.	4.3	66
46	The role of impregnation medium on the activity of ceria-supported cobalt catalysts for ethanol steam reforming. Journal of Molecular Catalysis A, 2010, 318, 21-29.	4.8	64
47	Investigation of the Reaction Network in Ethanol Steam Reforming over Supported Cobalt Catalysts. Industrial & Engineering Chemistry Research, 2010, 49, 8984-8989.	3.7	64
48	Heteroatom-Doped Carbon Nanostructures as Oxygen Reduction Reaction Catalysts in Acidic Media: An Overview. Catalysis Letters, 2015, 145, 436-450.	2.6	63
49	The effect of phosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEM fuel cells. Carbon, 2010, 48, 3637-3639.	10.3	61
50	Preferential oxidation of carbon monoxide on CoOx/ZrO2. Journal of Molecular Catalysis A, 2008, 279, 1-9.	4.8	58
51	CO Poisoning Effects on FeNC and CN _{<i>x</i>} ORR Catalysts: A Combined Experimental–Computational Study. Journal of Physical Chemistry C, 2016, 120, 15173-15184.	3.1	57
52	Application of {(DMF)10Ln2[Pd(CN)4]3}â^ž (Ln = Yb, Sm) as lanthanide–palladium catalyst precursors dispersed on sol–gel–TiO2 in the reduction of NO by methane in the presence of oxygen. Journal of Molecular Catalysis A, 2001, 165, 103-111.	4.8	56
53	Economic analysis of hydrogen production through a bio-ethanol steam reforming process: Sensitivity analyses and cost estimations. International Journal of Hydrogen Energy, 2010, 35, 127-134.	7.1	56
54	Reaction network of indole hydrodenitrogenation over NiMoS/γ-Al2O3 catalysts. Applied Catalysis A: General, 2000, 190, 51-60.	4.3	55

#	Article	IF	CITATIONS
55	Effect of additional B-site transition metal doping on oxygen transport and activation characteristics in La0.6Sr0.4(Co0.18Fe0.72X0.1)O3â~δ (where X=Zn, Ni or Cu) perovskite oxides. Applied Catalysis B: Environmental, 2011, 103, 318-325.	20.2	55
56	Effect of Cu loading on the catalytic performance of Fe–Al–Cu for water-gas shift reaction. Applied Catalysis A: General, 2009, 357, 66-72.	4.3	54
57	Examination of Catalyst Loading Effects on the Selectivity of CNx and Pt/VC ORR Catalysts Using RRDE. Journal of the Electrochemical Society, 2011, 158, B402.	2.9	54
58	Oxygen Mobility in Pre-Reduced Nano- and Macro-Ceria with Co Loading: An AP-XPS, In-Situ DRIFTS and TPR Study. Catalysis Letters, 2017, 147, 2863-2876.	2.6	52
59	Investigation of sulfur poisoning of CNx oxygen reduction catalysts for PEM fuel cells. Journal of Catalysis, 2012, 285, 145-151.	6.2	51
60	Mo Loading Effects over Mo/Si : Ti Catalysts in the Oxidative Dehydrogenation of Ethane. Journal of Catalysis, 2002, 208, 124-138.	6.2	49
61	Characterization of olivine-supported nickel silicate as potential catalysts for tar removal from biomass gasification. Applied Catalysis A: General, 2015, 489, 42-50.	4.3	49
62	Coke formation during high-temperature CO2 electrolysis over AFeO3 (A = La/Sr) cathode: Effect of A-site metal segregation. Applied Catalysis B: Environmental, 2021, 283, 119642.	20.2	48
63	Effect of Co Content Upon the Bulk Structure of Sr- and Co-doped LaFeO3. Catalysis Letters, 2008, 121, 179-188.	2.6	47
64	Effect of Cobalt on Reduction Characteristics of Ceria under Ethanol Steam Reforming Conditions: AP-XPS and XANES Studies. Journal of Physical Chemistry C, 2016, 120, 14631-14642.	3.1	46
65	Self-Sustained Oscillatory Behavior of NO+CH4+O2Reaction over Titania-Supported Pd Catalysts. Journal of Catalysis, 1997, 171, 67-76.	6.2	45
66	Characterization and temperature-programmed studies over Pd/TiO2 catalysts for NO reduction with methane. Catalysis Today, 1998, 40, 3-14.	4.4	45
67	The structure–function relationships in selective oxidation reactions over metal oxides. Catalysis Today, 2005, 100, 101-114.	4.4	44
68	Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane. Applied Catalysis B: Environmental, 2018, 227, 90-101.	20.2	44
69	Novel Synthesis Techniques for Preparation of Co/CeO2 as Ethanol Steam Reforming Catalysts. Catalysis Letters, 2009, 132, 422-429.	2.6	42
70	Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La,Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction. Applied Catalysis B: Environmental, 2021, 286, 119917.	20.2	42
71	Characterization of Active Sites over Reduced Niâ^'Mo/Al2O3Catalysts for Hydrogenation of Linear Aldehydes. Journal of Physical Chemistry B, 2005, 109, 1882-1890.	2.6	40
72	Evolution of N-Coordinated Iron–Carbon (FeNC) Catalysts and Their Oxygen Reduction (ORR) Performance in Acidic Media at Various Stages of Catalyst Synthesis: An Attempt at Benchmarking. Catalysis Letters, 2016, 146, 1749-1770.	2.6	40

#	Article	IF	CITATIONS
73	Optimization of thermally impregnated Ni–olivine catalysts for tar removal. Applied Catalysis A: General, 2009, 363, 64-72.	4.3	39
74	Methanol oxidation over nonprecious transition metal oxide catalysts. Industrial & Engineering Chemistry Research, 1990, 29, 1136-1142.	3.7	38
75	Use of carbon monoxide and cyanide to probe the active sites on nitrogen-doped carbon catalysts for oxygen reduction. Applied Catalysis B: Environmental, 2012, 113-114, 126-133.	20.2	38
76	NiMoS/Î ³ -Al2O3Catalysts: The Nature and the Aging Behavior of Active Sites in HDN Reactions. Journal of Catalysis, 1998, 178, 457-465.	6.2	37
77	Effect of crystal morphology in selective catalytic reduction of nitric oxide over V2O5 catalysts. Applied Catalysis A: General, 1993, 96, 365-381.	4.3	36
78	Hydrogen production by steam reforming of dimethyl ether over Pd-based catalytic monoliths. Applied Catalysis B: Environmental, 2011, 101, 690-697.	20.2	34
79	Nitrogen-Coordinated Ironâ^'Carbon as Efficient Bifunctional Electrocatalysts for the Oxygen Reduction and Oxygen Evolution Reactions in Acidic Media. Energy & Fuels, 2017, 31, 6541-6547.	5.1	34
80	Methanol Tolerance of CN x Oxygen Reduction Catalysts. Topics in Catalysis, 2007, 46, 339-348.	2.8	33
81	Adsorption characteristics of reduced Mo and Ni–Mo catalysts in the hydrodeoxygenation of benzofuran. Applied Catalysis A: General, 2008, 346, 96-103.	4.3	33
82	Correlation Between Oxygen Reduction Reaction and Oxidative Dehydrogenation Activities Over Nanostructured Carbon Catalysts. Catalysis Letters, 2010, 136, 1-8.	2.6	33
83	Effect of sulfur as a growth promoter for CNx nanostructures as PEM and DMFC ORR catalysts. Applied Catalysis B: Environmental, 2010, 96, 72-82.	20.2	33
84	Spectroscopic and Structural Characterization of Low-Level Alkali Doping Effects on Mo/Silicaâ°'Titania Catalysts. Journal of Physical Chemistry B, 2002, 106, 6930-6941.	2.6	32
85	Spectroscopic characterization of surface species in deactivation of sol–gel Gd–Pd catalysts in NO reduction with CH4 in the presence of SO2. Journal of Catalysis, 2003, 217, 1-1.	6.2	32
86	Hydrogenation of hexanal over sulfided Ni-Mo/γ-Al2O3 catalysts. Journal of Molecular Catalysis A, 2004, 217, 219-229.	4.8	32
87	Thermally Impregnated Niâ^'Olivine Catalysts for Tar Removal by Steam Reforming in Biomass Gasifiers. Industrial & Engineering Chemistry Research, 2008, 47, 717-723.	3.7	32
88	The Effect of Surface Acidic and Basic Properties on the Performance of Cobalt-Based Catalysts for Ethanol Steam Reforming. Topics in Catalysis, 2012, 55, 1324-1331.	2.8	32
89	Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media. Catalysis Letters, 2017, 147, 2903-2909.	2.6	32
90	Deactivation characteristics of Fe–Al–Cu water-gas shift catalysts in the presence of H2S. Journal of Molecular Catalysis A, 2009, 309, 63-70.	4.8	31

#	Article	IF	CITATIONS
91	In situ characterization of the growth of CNx carbon nano-structures as oxygen reduction reaction catalysts. Journal of Catalysis, 2013, 304, 100-111.	6.2	31
92	Oxygen and Nitrous Oxide as Oxidants: Implications for Ethane Oxidative Dehydrogenation over Silicaâ^'Titania-Supported Molybdenum. Journal of Physical Chemistry C, 2009, 113, 10112-10119.	3.1	30
93	Simultaneous hydrodesulfurization and hydrodenitrogenation of model compounds over nickel-molybdenum/.gammaalumina catalysts. Energy & Fuels, 1994, 8, 249-257.	5.1	28
94	Low-temperature Oxidation of Carbon Monoxide on Co/ZrO2. Catalysis Letters, 2007, 118, 180-186.	2.6	28
95	Nitric Oxide Reduction with Methane over Pd/TiO2Catalysts. Journal of Catalysis, 1997, 171, 45-53.	6.2	27
96	Doped LaFeO3 as SOFC catalysts: Control of oxygen mobility and oxidation activity. Catalysis Today, 2010, 157, 446-450.	4.4	27
97	Nitric Oxide Reduction with Methane over Pd/TiO2Catalysts. Journal of Catalysis, 1997, 171, 54-66.	6.2	26
98	Supercritical Fluid Extraction and Temperature-Programmed Desorption of Phenol and Its Oxidative Coupling Products from Activated Carbon. Industrial & Engineering Chemistry Research, 1998, 37, 3089-3097.	3.7	26
99	Oxygen Exchange Kinetics over Sr- and Co-Doped LaFeO ₃ . Journal of Physical Chemistry C, 2008, 112, 12468-12476.	3.1	26
100	Characterization and Activity of Unsupported Ni-Mo Sulfide Catalysts in HDN/HDS Reactions. Energy & Fuels, 1994, 8, 830-838.	5.1	25
101	Cr-free Fe-based water-gas shift catalysts prepared through propylene oxide-assisted sol–gel technique. Journal of Molecular Catalysis A, 2010, 321, 61-70.	4.8	25
102	Carbon corrosion characteristics of CNx nanostructures in acidic media and implications for ORR performance. Journal of Applied Electrochemistry, 2011, 41, 757-763.	2.9	25
103	Effect of H2O on sulfur poisoning and catalytic activity of Ni–YSZ catalysts. Applied Catalysis A: General, 2011, 393, 138-145.	4.3	25
104	A review of the current trends in high-temperature electrocatalytic ammonia production using solid electrolytes. Journal of Catalysis, 2020, 387, 207-216.	6.2	25
105	Synthesis, characterization and catalytic behavior of cobalt molybdates for 1-butene oxidation to maleic anhydride. Applied Catalysis, 1986, 23, 327-338.	0.8	24
106	Ce-doped strontium cobalt ferrite perovskites as cathode catalysts for solid oxide fuel cells: Effect of dopant concentration. Applied Catalysis B: Environmental, 2012, 127, 336-341.	20.2	24
107	Propane and propylene adsorption effects over MoOx-based catalysts induced by low levels of alkali doping. Journal of Molecular Catalysis A, 2003, 194, 115-135.	4.8	23
108	Hydrodechlorination of trichloroethylene over Pd supported on swellable organically-modified silica (SOMS). Applied Catalysis B: Environmental, 2017, 203, 641-653.	20.2	23

#	Article	IF	CITATIONS
109	Aqueous-phase hydrodechlorination of trichloroethylene over Pd-based swellable organically-modified silica (SOMS): Catalyst deactivation due to chloride anions. Applied Catalysis B: Environmental, 2018, 239, 654-664.	20.2	23
110	Experimental and DFT Investigation into Chloride Poisoning Effects on Nitrogen-Coordinated Iron–Carbon (FeNC) Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 10324-10335.	3.1	23
111	MoO3 catalysts promoted by MnMoO4I. Synthesis, characterization, and selectivity in oxidation of 1-butene and 1,3-butadiene to maleic anhydride. Journal of Catalysis, 1989, 116, 171-183.	6.2	22
112	Catalytic reduction of N2O and NO2 with methane over sol–gel palladium-based catalysts. Journal of Molecular Catalysis A, 2006, 259, 171-182.	4.8	21
113	Effect of chlorine on redox and adsorption characteristics of Mo/Si:Ti catalysts in the oxidative dehydrogenation of ethane. Journal of Molecular Catalysis A, 2004, 220, 53-65.	4.8	20
114	Aqueous-Phase Hydrodechlorination of Trichloroethylene over Pd-Based Swellable Organically Modified Silica: Catalyst Deactivation Due to Sulfur Species. Industrial & Engineering Chemistry Research, 2019, 58, 4054-4064.	3.7	20
115	Structural specificity of molybdenum trioxide in C4 hydrocarbon oxidation. Industrial & Engineering Chemistry Research, 1990, 29, 1454-1459.	3.7	19
116	The partial oxidation of C5 hydrocarbons over vanadia-based catalysts. Catalysis Today, 1997, 33, 57-71.	4.4	19
117	In-situ incorporation of binder during sol-gel preparation of Pd-based sulfated zirconia for reduction of nitrogen oxides under lean-burn conditions: Effect on activity and wash-coating characteristics. Applied Catalysis B: Environmental, 2017, 202, 134-146.	20.2	19
118	Swellable Organically Modified Silica (SOMS) as a Catalyst Scaffold for Catalytic Treatment of Water Contaminated with Trichloroethylene. ACS Catalysis, 2018, 8, 6796-6809.	11.2	19
119	Hydrogen Production from Water in a Solid Oxide Electrolysis Cell: Effect of Ni Doping on Lanthanum Strontium Ferrite Perovskite Cathodes. Industrial & Engineering Chemistry Research, 2019, 58, 22497-22505.	3.7	19
120	CO2 and H2O Electrolysis Using Solid Oxide Electrolyzer Cell (SOEC) with La and Cl- doped Strontium Titanate Cathode. Catalysis Letters, 2019, 149, 1743-1752.	2.6	19
121	Dual-catalyst aftertreatment of lean-burn natural gas engine exhaust. Applied Catalysis B: Environmental, 2007, 74, 73-82.	20.2	18
122	Pd-based sulfated zirconia prepared by a single step sol–gel procedure for lean NOx reduction. Journal of Molecular Catalysis A, 2007, 270, 101-111.	4.8	18
123	Effect of water vapor on the activity and stability of Pd/SZ and Co/ZrO2 in dual-catalyst treatment of simulated exhaust from lean-burn natural gas engines. Applied Catalysis B: Environmental, 2010, 96, 421-433.	20.2	18
124	Transient response studies of C4 hydrocarbon oxidation over MnMoO4/MoO3 catalysts. Applied Catalysis, 1990, 58, 305-318.	0.8	17
125	Use of isotopic transient techniques in the study of NO reduction reactions. Applied Catalysis A: General, 1997, 151, 289-303.	4.3	17
126	Effect of H2O and SO2 on the activity of Pd/TiO2 catalysts in catalytic reduction of NO with methane in the presence of oxygen. Catalysis Today, 1998, 42, 3-11.	4.4	17

#	Article	IF	CITATIONS
127	Effect of Ce Doping on the Performance and Stability of Strontium Cobalt Ferrite Perovskites as SOFC Anode Catalysts. Topics in Catalysis, 2015, 58, 359-374.	2.8	17
128	In situ DRIFTS characterization of wet-impregnated and sol–gel Pd/TiO2 for NO reduction with CH4. Catalysis Communications, 2002, 3, 199-206.	3.3	16
129	Correlation of NO and CO2 adsorption sites with aldehyde hydrogenation performance of sulfided NiMo/Al2O3 catalysts. Journal of Catalysis, 2004, 227, 492-501.	6.2	16
130	Effect of pre-treatment conditions on the performance of sulfided Ni–Mo/γ-Al2O3 catalysts for hydrogenation of linear aldehydes. Journal of Molecular Catalysis A, 2005, 232, 101-112.	4.8	16
131	Enhancement in Oxygen Reduction Reaction Activity of Nitrogenâ€Doped Carbon Nanostructures in Acidic Media through Chlorideâ€Ion Exposure. ChemElectroChem, 2018, 5, 1966-1975.	3.4	16
132	Formation of carbonaceous deposits on Pd-based hydrodechlorination catalysts: Vibrational spectroscopy investigations over Pd/Al2O3 and Pd/SOMS. Catalysis Today, 2019, 323, 129-140.	4.4	16
133	Chiral Modification of Catalytic Surfaces. , 0, , 113-140.		16
134	Synergy Effects in Selective Oxidation Catalysis. Studies in Surface Science and Catalysis, 1992, 72, 363-377.	1.5	15
135	Chlorine modification of Mo/silica-titania mixed-oxide catalysts for the oxidative dehydrogenation of ethane. Journal of Molecular Catalysis A, 2004, 208, 233-244.	4.8	15
136	Spectroscopic and Structural Characterization of Chlorine Loading Effects on Mo/Si:Ti Catalysts in Oxidative Dehydrogenation of Ethane. Journal of Physical Chemistry A, 2005, 109, 1260-1268.	2.5	15
137	Non-precious metal oxygen reduction catalysts for PEM fuel cells. Catalysis, 0, , 338-366.	1.0	15
138	Effect of high-temperature on the swellable organically-modified silica (SOMS) and its application to gas-phase hydrodechlorination of trichloroethylene. Applied Catalysis B: Environmental, 2017, 209, 80-90.	20.2	15
139	Synergy in CdMoO4/MoO3 catalysts in partial oxidation reactions of C4 hydrocarbons. Applied Catalysis, 1990, 62, 105-117.	0.8	14
140	Role of lanthanide elements on the catalytic behavior of supported Pd catalysts in the reduction of NO with methane. Catalysis Today, 1999, 53, 597-606.	4.4	14
141	A computational exploration of the oxygen reduction reaction over a carbon catalyst containing a phosphinate functional group. Chemical Communications, 2010, 46, 8621.	4.1	14
142	Desolvation and Dehydrogenation of Solvated Magnesium Salts of Dodecahydrododecaborate: Relationship between Structure and Thermal Decomposition. Chemistry - A European Journal, 2014, 20, 7325-7333.	3.3	13
143	Investigation of the Reduction/Oxidation Behavior of Cobalt Supported on Nano-ceria. Topics in Catalysis, 2014, 57, 785-795.	2.8	13
144	Exsolution of nanoparticles on A-site-deficient lanthanum ferrite perovskites: its effect on co-electrolysis of CO ₂ and H ₂ O. Journal of Materials Chemistry A, 2022, 10, 2483-2495.	10.3	13

#	Article	IF	CITATIONS
145	Effect of S-compounds and CO on hydrogenation of aldehydes over reduced and sulfided Ni–Mo/Al2O3 catalysts. Applied Catalysis A: General, 2005, 286, 111-119.	4.3	12
146	Effect of Acid-Washing on the Nature of Bulk Characteristics of Nitrogen-Doped Carbon Nanostructures as Oxygen Reduction Reaction Electrocatalysts in Acidic Media. Energy & Fuels, 2018, 32, 11038-11045.	5.1	12
147	Changes in Active Sites on Nitrogenâ€Doped Carbon Catalysts Under Oxygen Reduction Reaction: A Combined Postâ€Reaction Characterization and DFT Study. ChemCatChem, 2019, 11, 5945-5950.	3.7	12
148	Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system. Applied Catalysis A: General, 2020, 602, 117697.	4.3	12
149	Simultaneous HDN/HDS of model compounds over Ni-Mo sulfide catalysts. Studies in Surface Science and Catalysis, 1997, 106, 69-82.	1.5	11
150	Pd-supported on sulfated monoclinic zirconia for the reduction of NO2 with methane under lean conditions. Catalysis Letters, 2006, 111, 19-26.	2.6	11
151	Dual-catalyst aftertreatment of lean-burn engine exhaust. Catalysis Today, 2010, 151, 386-394.	4.4	11
152	Investigation of the Effect of Alumina Binder Addition to Pd/SO42––ZrO2 Catalysts during Sol–Gel Synthesis. Industrial & Engineering Chemistry Research, 2016, 55, 11445-11457.	3.7	11
153	Utilizing imogolite nanotubes as a tunable catalytic material for the selective isomerization of glucose to fructose. Catalysis Today, 2019, 323, 69-75.	4.4	11
154	Application of solid electrolyte cells in ion pump and electrolyzer modes to promote catalytic reactions: An overview. Catalysis Today, 2019, 323, 3-13.	4.4	11
155	Transient isotopic labeling using oxygen-16/oxygen-18 over alkali-metal-promoted molybdate catalysts in oxidative coupling of methane. The Journal of Physical Chemistry, 1993, 97, 11524-11529.	2.9	10
156	Effect of Engine Exhaust Parameters on the Hydrothermal Stability of Hydrocarbon-Selective Catalytic Reduction (SCR) Catalysts for Lean-Burn Systems. Energy & Fuels, 2012, 26, 7084-7091.	5.1	10
157	The role of oxidation catalyst in dual-catalyst bed for after-treatment of lean burn natural gas exhaust. Catalysis Today, 2012, 197, 127-136.	4.4	9
158	Spectroscopic characterization of Cl-modified Mo/Si:Ti catalysts for oxidative dehydrogenation of propane. Topics in Catalysis, 2006, 41, 63-72.	2.8	8
159	Effect of Microgravity on Synthesis of Nano Ceria. Catalysts, 2015, 5, 1306-1320.	3.5	8
160	Advances in High-Temperature Electrocatalytic Reduction of CO2 and H2O. Advances in Catalysis, 2018, 62, 113-165.	0.2	8
161	Elucidating the role of ethanol in aqueous phase hydrodechlorination of trichloroethylene over Pd catalysts supported on swellable organically modified silica (SOMS). Applied Catalysis B: Environmental, 2021, 285, 119819.	20.2	8

162 Optimal Design of Hierarchically Structured Porous Catalysts. , 0, , 25-58.

#	Article	IF	CITATIONS
163	Role of NH3 as an intermediate in reduction of NO with CH4 over sol–gel Pd catalysts on TiO2. Journal of Molecular Catalysis A, 2003, 192, 79-91.	4.8	7
164	On the dual role of the reactant during aqueous phase hydrodechlorination of trichloroethylene (HDC of TCE) using Pd supported on swellable organically modified silica (SOMS). Applied Catalysis B: Environmental, 2021, 291, 120060.	20.2	7
165	Phosphate tolerance of nitrogen-coordinated-iron-carbon (FeNC) catalysts for oxygen reduction reaction: A size-related hindrance effect. Journal of Catalysis, 2020, 390, 150-160.	6.2	6
166	Effect of High Temperature on Swellable Organically Modified Silica (SOMS) and Its Application for Preferential CO Oxidation in H ₂ Rich Environment. ChemCatChem, 2020, 12, 3753-3768.	3.7	6
167	Amperometric NOxSensor Based on Oxygen Reduction. IEEE Sensors Journal, 2016, 16, 1532-1540.	4.7	5
168	Effect of alumina incorporation on the sulfur tolerance of the dual-catalyst aftertreatment system for reduction of nitrogen oxides under lean conditions. Catalysis Today, 2019, 320, 204-213.	4.4	5
169	Aqueous phase hydrodechlorination of trichloroethylene using Pd supported on swellable organically modified silica (SOMS): Effect of support derivatization. Journal of Catalysis, 2022, 411, 15-30.	6.2	5
170	Oxidative Dehydrogenation over Sol-Gel Mo/Si:Ti Catalysts: Effect of Mo Loading. Studies in Surface Science and Catalysis, 2001, , 221-226.	1.5	4
171	Incident-angle dependent <i>operando</i> XAS cell design: investigation of the electrochemical cells under operating conditions at various incidence angles. RSC Advances, 2021, 11, 6456-6463.	3.6	4
172	Electrocatalytic applications of heteroatom-doped carbon nanostructures: thinking beyond PEM fuel cells. Catalysis, 2020, , 44-80.	1.0	4
173	Rational Design Strategies for Industrial Catalysts. , 0, , 83-111.		3
174	Variation of structure and properties of La1â^'xSrxCo0.2Fe0.8O3â~'δ with Sr content: Implications for oxidation activity. Journal of Molecular Catalysis A, 2011, 336, 23-33.	4.8	3
175	Oxidative dehydrogenation of propane over alkali-Mo catalysts supported on sol-gel silica-titania mixed oxides. Studies in Surface Science and Catalysis, 2000, 130, 1883-1888.	1.5	2
176	Theory-Aided Catalyst Design. , 0, , 231-258.		2
177	RRDE Catalyst Ink Aging Effects on Selectivity to Water Formation in ORR. Electrochemical and Solid-State Letters, 2010, 13, B98.	2.2	2
178	Using Volatile Organic Compounds in Waste Streams as Fuel. International Journal of Chemical Reactor Engineering, 2019, 17, .	1.1	2
179	Use ofIn Situ XAS Techniques for Catalysts' Characterization and Design. , 0, , 259-293.		2
180	Composite Cathodes with Oxide and Nitride Phases for High-Temperature Electrocatalytic Ammonia Production from Nitrogen and Water. , 0, , .		2

#	Article	IF	CITATIONS
181	Bridging Heterogeneous Catalysis and Electro-catalysis: Catalytic Reactions Involving Oxygen. Topics in Catalysis, 2013, 56, 1603-1610.	2.8	1
182	Use of Dendrimers in Catalyst Design. , 0, , 59-81.		1
183	Catalyst Design Through Dual Templating. , 0, , 295-314.		0
184	Catalytic Nanomotors. , 0, , 141-159.		0