

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731937/publications.pdf Version: 2024-02-01

TINC XII

#	Article	IF	CITATIONS
1	Generation of achromatic auto-focusing Airy beam for visible light by an all-dielectric metasurface. Journal of Applied Physics, 2022, 131, .	1.1	4
2	Fullâ€Stokes Polarimetry for Visible Light Enabled by an Allâ€Dielectric Metasurface. Advanced Photonics Research, 2022, 3, .	1.7	17
3	Vertically Aligned Micropillar Arrays Coated with a Conductive Polymer for Advanced Pseudocapacitance Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 10805-10814.	4.0	20
4	Trilobite-inspired neural nanophotonic light-field camera with extreme depth-of-field. Nature Communications, 2022, 13, 2130.	5.8	62
5	Tannic acid-reinforced zwitterionic hydrogels with multi-functionalities for diabetic wound treatment. Journal of Materials Chemistry B, 2022, 10, 4142-4152.	2.9	21
6	Polarization-insensitive optical angular filtration enabled by defective photonic crystals. Applied Physics Letters, 2022, 120, 241104.	1.5	2
7	Lithography-Free Nanofilm Color Filters Composed of CMOS-Compatible Materials. IEEE Photonics Technology Letters, 2021, 33, 672-675.	1.3	2
8	Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electronic Advances, 2021, 4, 200008-200008.	6.4	94
9	Principles, Functions, and Applications of Optical Metaâ€Lens. Advanced Optical Materials, 2021, 9, 2001414.	3.6	112
10	Broadband generation of perfect Poincaré beams via dielectric spin-multiplexed metasurface. Nature Communications, 2021, 12, 2230.	5.8	119
11	Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics, 2021, 10, 2283-2308.	2.9	47
12	Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Science and Applications, 2021, 10, 107.	7.7	167
13	Dynamically tunable coherent perfect absorption in topological insulators at oblique incidence. Optics Express, 2021, 29, 28652.	1.7	10
14	Generation of Perfect Vortex Beams by Dielectric Geometric Metasurface for Visible Light. Laser and Photonics Reviews, 2021, 15, 2100390.	4.4	61
15	Flexible perovskite nanosheet-based photodetectors for ultraviolet communication applications. Applied Physics Letters, 2021, 119, .	1.5	11
16	Photonic Metamaterial Absorbers: Morphology Engineering and Interdisciplinary Applications. Advanced Materials, 2020, 32, e1903787.	11.1	116
17	Coherent and incoherent coupling dynamics in a two-dimensional atomic crystal embedded in a plasmon-induced magnetic resonator. Physical Review B, 2020, 101, .	1.1	20
18	Plasmon-plasmon interactions supported by a one-dimensional plasmonic crystal: Rabi phase and generalized Rabi frequency. Physical Review B, 2020, 102, .	1.1	9

Тімс Хи

#	Article	IF	CITATIONS
19	Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications. ACS Applied Materials & Interfaces, 2020, 12, 52307-52318.	4.0	95
20	Broadband Detection of Multiple Spin and Orbital Angular Momenta via Dielectric Metasurface. Laser and Photonics Reviews, 2020, 14, 2000062.	4.4	58
21	Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging. Nano Letters, 2020, 20, 2791-2798.	4.5	180
22	Ultra-compact visible light depolarizer based on dielectric metasurface. Applied Physics Letters, 2020, 116, 0511031-511035.	1.5	9
23	Low-loss metasurface optics down to the deep ultraviolet region. Light: Science and Applications, 2020, 9, 55.	7.7	150
24	Low-cost and high sensitivity glucose sandwich detection using a plasmonic nanodisk metasurface. Nanoscale, 2020, 12, 10809-10815.	2.8	25
25	Independent Amplitude Control of Arbitrary Orthogonal States of Polarization via Dielectric Metasurfaces. Physical Review Letters, 2020, 125, 267402.	2.9	131
26	Electrochromic modulation of plasmonic resonance in a PEDOT-coated nanodisk metasurface. Optical Materials Express, 2020, 10, 1053.	1.6	10
27	Photorealistic full-color nanopainting enabled by a low-loss metasurface. Optica, 2020, 7, 1171.	4.8	57
28	Nanopainting with Light. Optics and Photonics News, 2020, 31, 42.	0.4	0
29	Hyperbolic Metamaterials: Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications (Advanced Optical Materials 14/2019). Advanced Optical Materials, 2019, 7, 1970054.	3.6	5
30	An ultra-flexible plasmonic metamaterial film for efficient omnidirectional and broadband optical absorption. Nanoscale, 2019, 11, 437-443.	2.8	29
31	A self-assembled plasmonic optical fiber nanoprobe for label-free biosensing. Scientific Reports, 2019, 9, 7379.	1.6	36
32	Photonic spin-controlled generation and transformation of 3D optical polarization topologies enabled by all-dielectric metasurfaces. Nanoscale, 2019, 11, 10646-10654.	2.8	18
33	Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Advanced Optical Materials, 2019, 7, 1801616.	3.6	144
34	Tapeâ€Imprinted Hierarchical Lotus Seedpodâ€Like Arrays for Extraordinary Surfaceâ€Enhanced Raman Spectroscopy. Small, 2019, 15, e1804527.	5.2	38
35	Nanoprinted Biosensors: Largeâ€Scale Plasmonic Nanodisk Structures for a High Sensitivity Biosensing Platform Fabricated by Transfer Nanoprinting (Advanced Optical Materials 7/2019). Advanced Optical Materials, 2019, 7, 1970026.	3.6	1
36	Largeâ€6cale Plasmonic Nanodisk Structures for a High Sensitivity Biosensing Platform Fabricated by Transfer Nanoprinting. Advanced Optical Materials, 2019, 7, 1801269.	3.6	32

Ting Xu

#	Article	IF	CITATIONS
37	Effect of solvent–matrix interactions on structures and mechanical properties of micelleâ€crosslinked gels. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 473-483.	2.4	8
38	Broadband Generation of Photonic Spin-Controlled Arbitrary Accelerating Light Beams in the Visible. Nano Letters, 2019, 19, 1158-1165.	4.5	94
39	Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Applied Materials & Interfaces, 2019, 11, 3506-3515.	4.0	309
40	Polarization-independent infrared micro-lens array based on all-silicon metasurfaces. Optics Express, 2019, 27, 10738.	1.7	37
41	Comparative investigation of sensing behaviors between gap and lattice plasmon modes in a metallic nanoring array. Nanoscale, 2018, 10, 548-555.	2.8	32
42	A high numerical aperture, polarization-insensitive metalens for long-wavelength infrared imaging. Applied Physics Letters, 2018, 113, .	1.5	58
43	Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chemistry of Materials, 2018, 30, 8062-8069.	3.2	318
44	Snap-Buckling Motivated Controllable Jumping of Thermo-Responsive Hydrogel Bilayers. ACS Applied Materials & Interfaces, 2018, 10, 41724-41731.	4.0	90
45	Angular Optical Transparency Induced by Photonic Topological Transitions in Metamaterials. Laser and Photonics Reviews, 2018, 12, 1700309.	4.4	26
46	Experimental investigation of extraordinary optical behaviors in a freestanding plasmonic cascade grating at visible frequency. Optics Express, 2018, 26, 3271.	1.7	4
47	Dual-band nearly perfect absorber at visible frequencies. Optical Materials Express, 2018, 8, 463.	1.6	46
48	Coherent and incoherent damping pathways mediated by strong coupling of two-dimensional atomic crystals with metallic nanogrooves. Physical Review B, 2018, 97, .	1.1	19
49	Experimental demonstration of high sensitivity refractive index sensing based on magnetic plasmons in a simple metallic deep nanogroove array. Optics Express, 2018, 26, 34122.	1.7	12
50	High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light. Optics Letters, 2018, 43, 6005.	1.7	25
51	Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency. Applied Physics Letters, 2017, 110, .	1.5	42
52	Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays. Scientific Reports, 2017, 7, 45044.	1.6	40
53	Surface plasmon polariton laser based on a metallic trench Fabry-Perot resonator. Science Advances, 2017, 3, e1700909.	4.7	70
54	Engineering Light at the Nanoscale: Structural Color Filters and Broadband Perfect Absorbers. Advanced Optical Materials, 2017, 5, 1700368.	3.6	141

Τινς Χυ

#	Article	IF	CITATIONS
55	Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing. ACS Sensors, 2017, 2, 1796-1804.	4.0	45
56	Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces. Scientific Reports, 2017, 7, 14695.	1.6	6
57	Aperiodic nanoplasmonic devices for directional colour filtering and sensing. Nature Communications, 2017, 8, 1347.	5.8	24
58	Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency. Scientific Reports, 2017, 7, 4357.	1.6	26
59	Large-scale broadband absorber based on metallic tungsten nanocone structure. Applied Physics Letters, 2017, 111, .	1.5	32
60	Hybrid metasurface for broadband enhancing optical absorption and Raman spectroscopy of graphene. Optical Materials Express, 2017, 7, 3591.	1.6	8
61	Freestanding optical negative-index metamaterials of green light. Optics Letters, 2017, 42, 3239.	1.7	12
62	Autofocusing Airy beams generated by all-dielectric metasurface for visible light. Optics Express, 2017, 25, 9285.	1.7	71
63	On-chip generation of broadband high-order Laguerre–Gaussian modes in a metasurface. Optics Letters, 2017, 42, 2463.	1.7	17
64	Research progress of imaging technologies based on electromagnetic metasurfaces. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 144208.	0.2	6
65	Plasmonic Nanoresonators for Spectral Color Filters and Structural Colored Pigments. , 2017, , 361-409.		0
66	Colored dual-functional photovoltaic cells. Journal of Optics (United Kingdom), 2016, 18, 064003.	1.0	17
67	High-contrast and fast electrochromic switching enabled by plasmonics. Nature Communications, 2016, 7, 10479.	5.8	226
68	High-Contrast Nanoparticle Sensing using a Hyperbolic Metamaterial. , 2015, , .		1
69	Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial. Nature Communications, 2014, 5, 4141.	5.8	120
70	All-angle negative refraction and active flat lensing of ultraviolet light. Nature, 2013, 497, 470-474.	13.7	277
71	All-Angle Left-handed Metamaterial and Active Flat Lensing in the Ultraviolet. , 2013, , .		0
72	Photonic Color Filters Integrated with Organic Solar Cells for Energy Harvesting. ACS Nano, 2011, 5, 7055-7060.	7.3	167

Τινς Χυ

#	Article	IF	CITATIONS
73	Structural Colors: From Plasmonic to Carbon Nanostructures. Small, 2011, 7, 3128-3136.	5.2	149
74	High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography. Applied Physics Letters, 2011, 99, .	1.5	175
75	High Efficiency and High Resolution Plasmonic Color Filters for Display Applications. , 2011, , .		0
76	Toward Low-Cost, High-Efficiency, and Scalable Organic Solar Cells with Transparent Metal Electrode and Improved Domain Morphology. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1807-1820.	1.9	68
77	Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Communications, 2010, 1, 59.	5.8	687
78	Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes. Advanced Materials, 2010, 22, 4378-4383.	11.1	343
79	Multilayer pattern transfer for plasmonic color filter applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C6O60-C6O63.	0.6	25
80	Subwavelength grating structures with magnetic resonances at visible frequencies fabricated by nanoimprint lithography for large area applications. Journal of Vacuum Science & Technology B, 2009, 27, 3175.	1.3	5
81	Localizing surface plasmons with a metal-cladding superlens forÂprojecting deep-subwavelength patterns. Applied Physics B: Lasers and Optics, 2009, 97, 175-179.	1.1	52
82	Subwavelength nanolithography based on unidirectional excitation of surface plasmons. Journal of Optics, 2009, 11, 085003.	1.5	21
83	Plasmonic beam deflector. Optics Express, 2008, 16, 4753.	1.7	105
84	Sub-diffraction-limited interference photolithography with metamaterials. Optics Express, 2008, 16, 13579.	1.7	65
85	Interference photolithography with metamaterials. , 2008, , .		Ο
86	Directional excitation of surface plasmons with subwavelength slits. Applied Physics Letters, 2008, 92,	1.5	123
87	Subwavelength imaging by metallic slab lens with nanoslits. Applied Physics Letters, 2007, 91, .	1.5	88