Karim Bouzakri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731662/publications.pdf

Version: 2024-02-01

236925 265206 3,577 42 25 42 citations h-index g-index papers 45 45 45 5651 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Crosstalk Communications Between Islets Cells and Insulin Target Tissue: The Hidden Face of Iceberg. Frontiers in Endocrinology, 2022, 13, 836344.	3.5	14
2	Impact of moderate dietary protein restriction on glucose homeostasis in a model of oestrogen deficiency. Journal of Nutritional Biochemistry, 2022, 102, 108952.	4.2	O
3	Impact of moderate exercise on fatty acid oxidation in pancreatic \hat{l}^2 -cells and skeletal muscle. Journal of Endocrinological Investigation, 2021, 44, 1815-1825.	3.3	7
4	Exerciseâ€evoked intramuscular neutrophilâ€endothelial interactions support muscle performance and GLUT4 translocation: a mouse gnawing model study. Journal of Physiology, 2020, 598, 101-122.	2.9	7
5	Glycaemic control in diabetic rats treated with islet transplantation using plasma combined with hydroxypropylmethyl cellulose hydrogel. Acta Biomaterialia, 2020, 102, 259-272.	8.3	16
6	Integrin and autocrine IGF2 pathways control fasting insulin secretion in \hat{l}^2 -cells. Journal of Biological Chemistry, 2020, 295, 16510-16528.	3.4	3
7	Beta-Cell-Specific Expression of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 5 Aggravates High-Fat Diet-Induced Impairment of Islet Insulin Secretion in Mice. Antioxidants and Redox Signaling, 2020, 32, 618-635.	5.4	10
8	Skeletal Muscle-Released Extracellular Vesicles: State of the Art. Frontiers in Physiology, 2019, 10, 929.	2.8	91
9	Insights on the Role of Putative Muscle-Derived Factors on Pancreatic Beta Cell Function. Frontiers in Physiology, 2019, 10, 1024.	2.8	12
10	Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas. Journal of Cellular and Molecular Medicine, 2019, 23, 8025-8034.	3.6	25
11	Angiogenin and Osteoprotegerin are type II muscle specific myokines protecting pancreatic beta-cells against proinflammatory cytokines. Scientific Reports, 2018, 8, 10072.	3.3	29
12	Extra-Hepatic Islet Transplantation. Cell Transplantation, 2018, 27, 1289-1293.	2.5	7
13	Effect of Human Myotubes-Derived Media on Glucose-Stimulated Insulin Secretion. Journal of Diabetes Research, 2017, 2017, 1-9.	2.3	13
14	Circulating Follistatin Is Liver-Derived and Regulated by the Glucagon-to-Insulin Ratio. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 550-560.	3.6	88
15	Selective protein depletion impairs bone growth and causes liver fatty infiltration in female rats: prevention by Spirulina alga. Osteoporosis International, 2016, 27, 3365-3376.	3.1	8
16	Glucose-Dependent Insulinotropic Peptide Stimulates Glucagon-Like Peptide 1 Production by Pancreatic Islets viaÂlnterleukin 6, Produced by α Cells. Gastroenterology, 2016, 151, 165-179.	1.3	59
17	IL-13 improves beta-cell survival and protects against IL-1beta-induced beta-cell death. Molecular Metabolism, 2016, 5, 122-131.	6.5	25
18	Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Molecular Metabolism, 2015, 4, 834-845.	6. 5	78

#	Article	IF	Citations
19	Fractalkine (CX3CL1), a new factor protecting î²-cells against TNFî±. Molecular Metabolism, 2014, 3, 731-741.	6.5	31
20	Expression, phosphorylation and function of the Rabâ€GTPase activating protein TBC1D1 in pancreatic betaâ€cells. FEBS Letters, 2014, 588, 15-20.	2.8	15
21	Identification of a SIRT1 Mutation in a Family with Type 1 Diabetes. Cell Metabolism, 2013, 17, 448-455.	16.2	103
22	Bimodal impact of skeletal muscle on pancreatic $\hat{l}^2 \hat{a} \in \mathfrak{C}$ ell function in health and disease. Diabetes, Obesity and Metabolism, 2012, 14, 78-84.	4.4	24
23	In Vitro Proliferation of Adult Human Beta-Cells. PLoS ONE, 2012, 7, e35801.	2.5	52
24	Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine, 2011, 17, 1481-1489.	30.7	714
25	Bimodal Effect on Pancreatic \hat{l}^2 -Cells of Secretory Products From Normal or Insulin-Resistant Human Skeletal Muscle. Diabetes, 2011, 60, 1111-1121.	0.6	115
26	Pax6 Controls the Expression of Critical Genes Involved in Pancreatic \hat{l}_{\pm} Cell Differentiation and Function*. Journal of Biological Chemistry, 2010, 285, 33381-33393.	3.4	62
27	Silencing Mitogen-activated Protein 4 Kinase 4 (MAP4K4) Protects Beta Cells from Tumor Necrosis Factor-α-induced Decrease of IRS-2 and Inhibition of Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 27892-27898.	3.4	48
28	siRNA-Mediated Reduction of Inhibitor of Nuclear Factor-κB Kinase Prevents Tumor Necrosis Factor-α–Induced Insulin Resistance in Human Skeletal Muscle. Diabetes, 2008, 57, 2066-2073.	0.6	80
29	Malonyl CoenzymeA Decarboxylase Regulates Lipid and Glucose Metabolism in Human Skeletal Muscle. Diabetes, 2008, 57, 1508-1516.	0.6	69
30	Rab GTPase-Activating Protein AS160 Is a Major Downstream Effector of Protein Kinase B/Akt Signaling in Pancreatic Î ² -Cells. Diabetes, 2008, 57, 1195-1204.	0.6	50
31	MAP4K4 Gene Silencing in Human Skeletal Muscle Prevents Tumor Necrosis Factor-α-induced Insulin Resistance. Journal of Biological Chemistry, 2007, 282, 7783-7789.	3.4	119
32	Signaling Specificity of Interleukin-6 Action on Glucose and Lipid Metabolism in Skeletal Muscle. Molecular Endocrinology, 2006, 20, 3364-3375.	3.7	206
33	siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metabolism, 2006, 4, 89-96.	16.2	180
34	IRS-1 Serine Phosphorylation and Insulin Resistance in Skeletal Muscle From Pancreas Transplant Recipients. Diabetes, 2006, 55, 785-791.	0.6	47
35	Molecular Mechanisms of Skeletal Muscle Insulin Resistance in Type 2 Diabetes. Current Diabetes Reviews, 2005, 1, 167-174.	1.3	84
36	Tumor Necrosis Factor-Â Induces Skeletal Muscle Insulin Resistance in Healthy Human Subjects via Inhibition of Akt Substrate 160 Phosphorylation. Diabetes, 2005, 54, 2939-2945.	0.6	503

3

#	Article	IF	CITATION
37	Suppressor of Cytokine Signaling 3 Expression and Insulin Resistance in Skeletal Muscle of Obese and Type 2 Diabetic Patients. Diabetes, 2004, 53, 2232-2241.	0.6	161
38	IL-4 and IL-13 Up-Regulate Intestinal Trefoil Factor Expression: Requirement for STAT6 and De Novo Protein Synthesis. Journal of Immunology, 2004, 172, 3775-3783.	0.8	79
39	WY-14643 and 9-cis-retinoic acid induce IRS-2/PI 3-kinase signalling pathway and increase glucose transport in human skeletal muscle cells: differential effect in myotubes from healthy subjects and Type 2 diabetic patients. Diabetologia, 2004, 47, 1314-1323.	6.3	17
40	Reduced Activation of Phosphatidylinositol-3 Kinase and Increased Serine 636 Phosphorylation of Insulin Receptor Substrate-1 in Primary Culture of Skeletal Muscle Cells From Patients With Type 2 Diabetes. Diabetes, 2003, 52, 1319-1325.	0.6	262
41	Regulation of p85α phosphatidylinositol-3-kinase expression by peroxisome proliferator-activated receptors (PPARs) in human muscle cells. FEBS Letters, 2001, 502, 98-102.	2.8	18
42	The expression of the p85 \hat{l} ± subunit of phosphatidylinositol 3-Kinase is induced by activation of the peroxisome proliferator-activated receptor \hat{l}^3 in human adipocytes. Diabetologia, 2001, 44, 544-554.	6.3	44