## Pierre-Yves Meslin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2731603/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cryogenic origin of fractionation between perchlorate and chloride under modern martian climate.<br>Communications Earth & Environment, 2022, 3, .                                                                                             | 6.8  | 1         |
| 2  | Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy.<br>Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 188, 106347.                                                                         | 2.9  | 40        |
| 3  | Bedrock Geochemistry and Alteration History of the Clayâ€Bearing Glen Torridon Region of Gale Crater,<br>Mars. Journal of Geophysical Research E: Planets, 2022, 127, .                                                                        | 3.6  | 17        |
| 4  | In situ recording of Mars soundscape. Nature, 2022, 605, 653-658.                                                                                                                                                                              | 27.8 | 30        |
| 5  | Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance. Analytica Chimica Acta, 2022, 1209, 339837.                                                                                                             | 5.4  | 9         |
| 6  | Experimental Wind Characterization with the SuperCam Microphone under a Simulated martian<br>Atmosphere. Icarus, 2021, 354, 114060.                                                                                                            | 2.5  | 12        |
| 7  | The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description.<br>Space Science Reviews, 2021, 217, 1.                                                                                                    | 8.1  | 131       |
| 8  | The Impact of Measurement Scale on the Univariate Statistics of K, Th, and U in the Earth Crust. Earth and Space Science, 2021, 8, e2021EA001786.                                                                                              | 2.6  | 1         |
| 9  | Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for ChemCam analyses at Gale crater, Mars. Icarus, 2021, 365, 114481.                                                                             | 2.5  | 11        |
| 10 | Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry. Journal of Environmental Radioactivity, 2021, 237, 106695.                                                               | 1.7  | 8         |
| 11 | The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.<br>Space Science Reviews, 2021, 217, 4.                                                                                                        | 8.1  | 160       |
| 12 | Analyses of Highâ€Iron Sedimentary Bedrock and Diagenetic Features Observed With ChemCam at Vera<br>Rubin Ridge, Gale Crater, Mars: Calibration and Characterization. Journal of Geophysical Research E:<br>Planets, 2020, 125, e2019JE006314. | 3.6  | 30        |
| 13 | Recording laser-induced sparks on Mars with the SuperCam microphone. Spectrochimica Acta, Part B:<br>Atomic Spectroscopy, 2020, 174, 106000.                                                                                                   | 2.9  | 25        |
| 14 | Iron Mobility During Diagenesis at Vera Rubin Ridge, Gale Crater, Mars. Journal of Geophysical<br>Research E: Planets, 2020, 125, e2019JE006299.                                                                                               | 3.6  | 30        |
| 15 | SuperCam Calibration Targets: Design and Development. Space Science Reviews, 2020, 216, 138.                                                                                                                                                   | 8.1  | 44        |
| 16 | Mineralogy of Vera Rubin Ridge From the Mars Science Laboratory CheMin Instrument. Journal of<br>Geophysical Research E: Planets, 2020, 125, e2019JE006306.                                                                                    | 3.6  | 86        |
| 17 | The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale<br>Crater, Mars, as Observed by the ChemCam Instrument. Journal of Geophysical Research E: Planets,<br>2020, 125, e2019JE006320.              | 3.6  | 41        |
| 18 | Hydrogen Variability in the Murray Formation, Gale Crater, Mars. Journal of Geophysical Research E:<br>Planets, 2020, 125, e2019IE006289.                                                                                                      | 3.6  | 12        |

PIERRE-YVES MESLIN

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Disambiguating the soils of Mars. Planetary and Space Science, 2020, 186, 104922.                                                                                                                                                         | 1.7  | 16        |
| 20 | The Methane Diurnal Variation and Microseepage Flux at Gale Crater, Mars as Constrained by the<br>ExoMars Trace Gas Orbiter and Curiosity Observations. Geophysical Research Letters, 2019, 46,<br>9430-9438.                             | 4.0  | 31        |
| 21 | Mars Science Laboratory Observations of Chloride Salts in Gale Crater, Mars. Geophysical Research<br>Letters, 2019, 46, 10754-10763.                                                                                                      | 4.0  | 52        |
| 22 | Listening to laser sparks: a link between Laser-Induced Breakdown Spectroscopy, acoustic<br>measurements and crater morphology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 153,<br>50-60.                                    | 2.9  | 57        |
| 23 | Methane seasonal cycle at Gale Crater on Mars consistent with regolith adsorption and diffusion.<br>Nature Geoscience, 2019, 12, 321-325.                                                                                                 | 12.9 | 24        |
| 24 | Copper enrichments in the Kimberley formation in Gale crater, Mars: Evidence for a Cu deposit at the source. Icarus, 2019, 321, 736-751.                                                                                                  | 2.5  | 23        |
| 25 | Chemical alteration of fine-grained sedimentary rocks at Gale crater. Icarus, 2019, 321, 619-631.                                                                                                                                         | 2.5  | 52        |
| 26 | Chemical variability in mineralized veins observed by ChemCam on the lower slopes of Mount Sharp in<br>Gale crater, Mars. Icarus, 2018, 311, 69-86.                                                                                       | 2.5  | 34        |
| 27 | Gypsum, bassanite, and anhydrite at Gale crater, Mars. American Mineralogist, 2018, 103, 1011-1020.                                                                                                                                       | 1.9  | 96        |
| 28 | Martian Eolian Dust Probed by ChemCam. Geophysical Research Letters, 2018, 45, 10,968.                                                                                                                                                    | 4.0  | 40        |
| 29 | In Situ Analysis of Opal in Gale Crater, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 1955-1972.                                                                                                                          | 3.6  | 36        |
| 30 | Characterization of Hydrogen in Basaltic Materials With Laserâ€Induced Breakdown Spectroscopy<br>( <scp>LIBS</scp> ) for Application to <scp>MSL</scp> ChemCam Data. Journal of Geophysical Research<br>E: Planets, 2018, 123, 1996-2021. | 3.6  | 32        |
| 31 | Background levels of methane in Mars' atmosphere show strong seasonal variations. Science, 2018,<br>360, 1093-1096.                                                                                                                       | 12.6 | 224       |
| 32 | Quantification of water content by laser induced breakdown spectroscopy on Mars. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2017, 130, 82-100.                                                                                  | 2.9  | 65        |
| 33 | Diagenetic silica enrichment and lateâ€stage groundwater activity in Gale crater, Mars. Geophysical<br>Research Letters, 2017, 44, 4716-4724.                                                                                             | 4.0  | 87        |
| 34 | Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater,<br>Mars: A synthesis of Curiosity rover observations. Journal of Geophysical Research E: Planets, 2017,<br>122, 2510-2543.          | 3.6  | 95        |
| 35 | Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. Journal of Geophysical Research E: Planets, 2017, 122, 650-679.                                                                 | 3.6  | 48        |
| 36 | Roughness effects on the hydrogen signal in laser-induced breakdown spectroscopy. Spectrochimica<br>Acta, Part B: Atomic Spectroscopy, 2017, 137, 13-22.                                                                                  | 2.9  | 34        |

PIERRE-YVES MESLIN

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater. Journal of Geophysical Research E: Planets, 2017, 122, 2144-2162.                                     | 3.6  | 46        |
| 38 | Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus, 2017, 281, 121-136.                                                                                                          | 2.5  | 90        |
| 39 | Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. Journal of Geophysical Research E: Planets, 2016, 121, 353-387.                                         | 3.6  | 53        |
| 40 | Magmatic complexity on early Mars as seen through a combination of orbital, in-situ and meteorite data. Lithos, 2016, 254-255, 36-52.                                                                                          | 1.4  | 66        |
| 41 | Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins. Earth and<br>Planetary Science Letters, 2016, 452, 197-205.                                                                       | 4.4  | 103       |
| 42 | The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on board <i>Curiosity</i> .<br>Journal of Geophysical Research E: Planets, 2016, 121, 784-804.                                                         | 3.6  | 67        |
| 43 | ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. Journal of Analytical Atomic Spectrometry, 2016, 31, 863-889.                                               | 3.0  | 134       |
| 44 | Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board<br>the Curiosity rover on Mars. Journal of Geophysical Research E: Planets, 2015, 120, 452-482.                                | 3.6  | 51        |
| 45 | Hydrogen detection with ChemCam at Gale crater. Icarus, 2015, 249, 43-61.                                                                                                                                                      | 2.5  | 58        |
| 46 | First detection of fluorine on Mars: Implications for Gale Crater's geochemistry. Geophysical<br>Research Letters, 2015, 42, 1020-1028.                                                                                        | 4.0  | 107       |
| 47 | In situ evidence for continental crust on early Mars. Nature Geoscience, 2015, 8, 605-609.                                                                                                                                     | 12.9 | 233       |
| 48 | Mars methane detection and variability at Gale crater. Science, 2015, 347, 415-417.                                                                                                                                            | 12.6 | 373       |
| 49 | Understanding the signature of rock coatings in laser-induced breakdown spectroscopy data. Icarus, 2015, 249, 62-73.                                                                                                           | 2.5  | 49        |
| 50 | Trace element geochemistry (Li, Ba, Sr, and Rb) using <i>Curiosity</i> 's ChemCam: Early results for<br>Gale crater from Bradbury Landing Site to Rocknest. Journal of Geophysical Research E: Planets, 2014,<br>119, 255-285. | 3.6  | 86        |
| 51 | Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars.<br>Science, 2014, 343, 1245267.                                                                                                  | 12.6 | 323       |
| 52 | A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343,<br>1242777.                                                                                                               | 12.6 | 687       |
| 53 | Mineralogy of a Mudstone at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1243480.                                                                                                                                   | 12.6 | 508       |
| 54 | Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars. Science, 2014, 343, 1244734.                                                                                                                | 12.6 | 246       |

PIERRE-YVES MESLIN

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars. Journal of<br>Geophysical Research E: Planets, 2014, 119, 1991-2016.                                                                              | 3.6  | 214       |
| 56 | The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest. Journal of Geophysical Research E: Planets, 2014, 119, 1374-1389.                                                    | 3.6  | 46        |
| 57 | Chemistry and texture of the rocks at Rocknest, Gale Crater: Evidence for sedimentary origin and diagenetic alteration. Journal of Geophysical Research E: Planets, 2014, 119, 2109-2131.                                        | 3.6  | 48        |
| 58 | Constraints on abundance, composition, and nature of Xâ€ray amorphous components of soils and rocks at Gale crater, Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2640-2657.                                      | 3.6  | 73        |
| 59 | Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown<br>spectroscopy instrument on the Mars Science Laboratory rover. Spectrochimica Acta, Part B: Atomic<br>Spectroscopy, 2013, 82, 1-27. | 2.9  | 258       |
| 60 | X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater.<br>Science, 2013, 341, 1238932.                                                                                                   | 12.6 | 327       |
| 61 | Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow. Science, 2013, 341, 1239505.                                                                                                          | 12.6 | 280       |
| 62 | Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover. Science, 2013, 341, 1238937.                                                                                                             | 12.6 | 367       |
| 63 | Martian Fluvial Conglomerates at Gale Crater. Science, 2013, 340, 1068-1072.                                                                                                                                                     | 12.6 | 326       |
| 64 | The Petrochemistry of Jake_M: A Martian Mugearite. Science, 2013, 341, 1239463.                                                                                                                                                  | 12.6 | 134       |
| 65 | Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science, 2013, 341, 1238670.                                                                                                                           | 12.6 | 215       |
| 66 | Low Upper Limit to Methane Abundance on Mars. Science, 2013, 342, 355-357.                                                                                                                                                       | 12.6 | 103       |
| 67 | The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Science Reviews, 2012, 170, 95-166.                                                                 | 8.1  | 372       |
| 68 | Little variability of methane on Mars induced by adsorption in the regolith. Planetary and Space Science, 2011, 59, 247-258.                                                                                                     | 1.7  | 25        |
| 69 | Evidence of210Po on Martian dust at Meridiani Planum. Journal of Geophysical Research, 2006, 111, .                                                                                                                              | 3.3  | 5         |